Ⅰ 物理学计算中经常出现一个正三角或倒三角,是什么算符
正三角形是在高中物理上经常出现的一个符号,它是希腊字母,读作:delta,它表示的是某个物理量的变化.例如:
Δv=v2-v1
Δt=t2-t1
而倒三角形是在高等数学和物理学里面才有的一个符号,它表示的是物理量:梯度.
对这个暂时就不要做过多的了解了,如果你在大学里学物理学,自然会接触到它.
Ⅱ 我暑假要自学《数学物理方法》和《电动力学》 我看了下书,里面有个符号——▽ 倒三角。是啥意思啊梯度
哎,我已很久没接触这方面内容了,早已有所遗忘,把这一页书直接拍摄下来,希望能帮到你 (这是高等教育出版社工程数学《矢量分析与场论》中的内容)
Ⅲ 物理里的倒三角是什么意思,举例说明
读作达尔塔。。一般表示差值, 比方 温度t1到t2的 温度差就用达尔塔t表示
Ⅳ 麦克斯韦方程组里的倒三角形和"6"字的镜像是什么意思
倒三角形是拉谱拉斯算子和"6"字的镜像是求偏导数。
麦克斯韦方程组(英语:Maxwell's equations),是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。
从麦克斯韦方程组,可以推论出电磁波在真空中以光速传播,并进而做出光是电磁波的猜想。麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦1865年提出的最初形式的方程组由20个等式和20个变量组成。他在1873年尝试用四元数来表达,但未成功。现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
Ⅳ 倒三角符号是什么物理意义
▽的物理意义:
▽为对矢量做偏导,它是一个矢量,
▽U表示为矢量U的梯度,
▽•U表示为矢量U的散度
▽×U表示为矢量U的旋度
若是▽平方,即做二阶偏导,则表示为哈密顿算子。
三角形符号倒过来(▽ )是梯度算子(在空间各方向上的全微分),是微积分中的一个微分算子,叫Hamilton算子,用来表示梯度和散度,读作Nabla。
▽为对矢量做偏导,它是一个矢量;▽U表示为矢量U的梯度;▽•U表示为矢量U的散度;▽×U表示为矢量U的旋度。
(5)物理学中倒三角表示什么意思扩展阅读:
劈形算子在标准HTML中写为&nabla,而在LaTeX中为 abla。在Unicode中,它是十进制数8711,也即十六进制数0x2207。
劈形算子在数学中用于指代梯度算符,并形成散度、旋度和拉普拉斯算子。它也用于指代微分几何中的联络(可以视为更广意义上的梯度算子)。它由哈密尔顿引入。
(1)为了得到 x jxi′ 这个系数,我们写出坐标变换的反变换 ′ x j = λkj xk。
(2)并将其两边对 xi′求导数,得x j x′ = λkj k = λkjδ ik = λij xi′ xi′将它代入式(1),我们就得到了。
(3)φ φ = λij xi′ x j这个式子说明( φx1 , φ x2 , φ x3 ) 是一个矢量。
上面的论证与我们究竟是在对哪一个标量场进行微分是没有关系的.既然不 管我们对之进行微分的是什么,那些变换公式都相同,那就可以略去 φ 而由一个算符方程式来代替式。
(5)xi 用 i 来表示,即 i ≡ xi .这样的记号写起来更加简单,而且在复杂的场合也不容易出错.而目前,我们则可以利用它将上面的 变换关系可以写得好看一些′ = λij j i。
Ⅵ 倒着的Δ在物理中是什么意思
倒着的Δ,其数学名称是哈密顿算子,读做NABLA.是个微分算符,表示对函数在各个正交方向上求导数以后再分别乘上各个方向上的单位向量.它跟数量(标量)函数数A乘以后表示A的梯度;右点乘一个向量函数B以后表示B的散度;右差乘B的话就是B的旋度.至于拉普拉斯算符则是NABLA点乘自己,是个标量微分算符.
当然在物理学上因为有个着名的能量方程叫哈密顿,所以"哈密顿算子"在物理学上特指系统的能量算子.一般用H上面加一个波浪表示.
Ⅶ 倒三角形u什么意思,在数学物理方程中出现
这个是对函数U求梯度的意思,那个倒三角形叫哈密顿算符。
望采纳
Ⅷ 倒三角符号是什么物理意义
三角形符号倒过来(▽ )是梯度算子(在空间各方向上的全微分),是微积分中的一个微分算子,叫Hamilton算子,用来表示梯度和散度,读作Nabla。
劈形算子,倒三角算子(nabla)
是一个符号,形为∇。该名字来自希腊语的某种竖琴:纳布拉琴。相关的词汇也存在于亚拉姆语和希伯来语中。
另一个对于该符号常见的名称是atled,因为它是希腊字母Δ倒过来的形状。除了atled外,它还有一个名称是del。
劈形算子在标准HTML中写为&nabla,而在LaTeX中为 abla。在Unicode中,它是十进制数8711,也即十六进制数0x2207。
劈形算子在数学中用于指代梯度算符,并形成散度、旋度和拉普拉斯算子。它也用于指代微分几何中的联络(可以视为更广意义上的梯度算子)。它由哈密尔顿引入。
(8)物理学中倒三角表示什么意思扩展阅读:
▽为对矢量做偏导,它是一个矢量;▽U表示为矢量U的梯度;▽•U表示为矢量U的散度;▽×U表示为矢量U的旋度。
就是对倒三角后面的量做如下操作:表示对函数在各个正交方向上求导数以后再分别乘上各个方向上的单位向量。比如电场强度E=-▽U,就表示电场强度E是电势U的负梯度,它是矢量,方向指向电势降落(梯度求增量,故负号表示降落)最快的方向。
Ⅸ 数学符号里面倒三角 正三角 符号的意思
正三角形是在高中物理上经常出现的一个符号,它是希腊字母,读作:delta,它表示的是某个物理量的变化。例如:Δv=v2-v1,Δt=t2-t1
而倒三角形是在高等数学和物理学里面才有的一个符号,它表示的是物理量:梯度。▽ 是梯度算子(在空间各方向上的全微分),比如电场强度E=-▽U,就表示电场强度E是电势U的负梯度,它是矢量,方向指向电势降落(梯度求增量,故负号表示降落)最快的方向。
(9)物理学中倒三角表示什么意思扩展阅读:
当应用于在一维域上定义的函数时,它表示其在微积分中定义的标准导数。 当应用于场(在多维域上定义的函数)时,del可以表示标量场(或者有时是矢量场,如在Navier-Stokes方程式中)的斜率(局部最陡坡度),发散度的矢量场,或矢量场的旋度(旋转),这取决于它的应用方式。
严格来说,del并不是一个特定的算子,而是一个方便的使用的数学符号,这使得许多方程易于书写和记忆。nabla算符可以解释为向量的偏导数运算符,其三个可能的含义 - 梯度,散度和旋度 - 可以被正式地视为具有标量,点积和交叉乘积的乘积。详细描述如下,梯度:
参考资料:网络-Nabla 算子