‘壹’ 热力学与统计物理中有哪些重要的定理
热力学的基础当然是热力学三定律喽,不用多说什么吧?(如果把第零定律算进去也可以吧,感觉其实不大重要)
从热力学第一、第二定律出发,可以得到一系列的麦克斯韦关系,这个也是比较重要的,可以将式子变成想要的形式。
再之后就是要知道一些重要的物理量定义——内能、焓、熵、自由能,等等。
然后与三定律关系不大的一部分是相变,包括经典理论、克拉博龙方程、朗道相变理论,等等。
再之后应当就是灵活应用了。
对于统计物理部分,首先要知道三大分布——麦克斯韦-玻尔兹曼分布、玻色-爱因斯坦分布、费米-狄拉克分布,这个是基础。之后就是基于三个分布定义的配分函数、巨配分函数以及它们和热力学公式的联系。在统计物理中,还要建立相空间的概念。最后,应该就是系综了,包括正则系综、微正则系综和巨正则系综。在统计物理部分,可以得到的定理比较多,比如麦克斯韦-玻尔兹曼分布中可以得到麦克斯韦速度分布律,进而可以从统计意义下理解压强、温度等经典概念,还可以得到能均分定理,等等;从玻色-爱因斯坦分布可以解释光子气体(即普朗克公式)和BEQ现象,等等;从费米-狄拉克分布可以描述自由电子气体,得到金属热容的T3律,等等;系综理论可以推导出实际气体状态方程——范德瓦耳斯方程,还可以解释相变(如伊辛模型、超流)等等。
上述仅仅是个人的小总结,可能不全面,希望能帮到你。
‘贰’ 统计物理学是一门怎样的学科
统计物理学
statistical physics
根据对物质微观结构及微观粒子相互作用的认识,用概率统计的方法,对由大量粒子组成的宏观物体的物理性质及宏观规律作出微观解释的理论物理学分支。又称统计力学。所谓大量,是以1摩尔物质所含分子数(其数量级为1023个)为尺度的。研究对象从少量个体变为由大量个体组成的群体,导致规律性质和研究方法的根本变化,大量粒子系统所遵循的统计规律是不能归结为力学规律的。统计物理是由微观到宏观的桥梁,它为各种宏观理论提供依据,已经成为气体、液体、固体和等离子体理论的基础,并在化学和生物学的研究中发挥作用。气体动理论(曾称气体分子运动论)是早期的统计理论。它揭示了气体的压强、温度、内能等宏观量的微观本质,并给出了它们与相应的微观量平均值之间的关系。平均自由程公式的推导,气体分子速率或速度分布律的建立,能量均分定理的给出,以及有关数据的得出,使人们对平衡态下理想气体分子的热运动、碰撞、能量分配等等有了清晰的物理图像和定量的了解,同时也显示了概率、统计分布等对统计理论的特殊重要性。
非平衡态分布函数及其演化方程的建立,不仅成为输运过程微观统计理论的基础 ,而且由它定义的H函数及其遵循的H定理对理解宏观过程的不可逆性及趋于平衡的过程起过重要作用。熵的统计意义的阐明,熵增加原理的微观统计解释表明统计理论已从平衡态向非平衡态发展,已经从对某些宏观概念和宏观规律的微观统计解释发展到对热力学第二定律这样的普遍规律作出微观统计解释。但是,气体动理论以分子为统计个体,需对分子的结构以及分子间的作用作出并无根据的猜测或假设,这是它进一步发展的根本困难和限制。
J.W.吉布斯把整个系统作为统计的个体 ,提出研究大量系统构成的系综在相宇中的分布,克服了气体动理论的困难,建立了统计物理。在平衡态统计理论中,对于能量和粒子数固定的孤立系统,采用微正则系综;对于可以和大热源交换能量但粒子数固定的系统,采用正则系综;对于可以和大热源交换能量和粒子的系统,采用巨正则系综。这是三种常用的系综,各系综在相宇中的分布密度函数均已得出。量子统计与经典统计的研究对象和研究方法相同,在量子统计中系综概念仍然适用。区别在于量子统计认为微观粒子的运动遵循量子力学规律而不是经典力学规律,微观运动状态具有不连续性,需用量子态而不是相宇来描述。
非平衡态统计物理内容广泛,是尚在迅速发展远未成熟的学科。对处于平衡态附近的系统,研究其趋于平衡的弛豫时间及其与温度的依赖关系;对离平衡不太远,维持温度差、浓度差、电势差等而经历各种输运过程的系统,研究其各种线性输运系数,另外,还研究涨落现象。弛豫、输运、涨落是平衡态附近的主要非平衡过程。
20世纪60年代以来,对远离平衡态的物理现象进行了广泛的研究,其中最重要的是远离平衡的突变,有序结构的出现,建立了耗散结构理论,但尚未形成完整的理论体系。
‘叁’ 什么叫系综平均
在一定的宏观条件下,大量性质和结构完全相同的、处于各种运动状态的、各自独立的系统的集合。全称为统计系综。 系综是用统计方法描述热力学系统的统计规律性时引入的一个基本概念;系综是统计理论的一种表述方式。
对于一个具有大数自由度的体系,其宏观热力学性质可以将体系对时间求平均得到,也可以对系综求平均得到。所谓系综是指大数独立、但又全同的系统的集合。
对于单一量子态的系综,所有的系统处于相同的量子态,波函数决定了在这一量子态中系统力学量的统计分布。这种量子系综称为纯系综。系综是假想的概念,并不是真实的客观实体。真正的实体是组成系综的一个个系统,这些系统具有完 全相同的力学性质。每个系统的微观状态可能相同,也可能不同,但是处于平衡状态时,系综的平均值应该是确定的。
‘肆’ 系综的常用的三个系综
J.W. 吉布斯把整个系统作为统计的个体 ,提出研究大量系统构成的系综在相宇中的分布,克服了气体动理论的困难,建立了统计物理。在平衡态统计理论中,对于能量和粒子数固定的孤立系统,采用微正则系综(NVE);对于可以和大热源交换能量但粒子数固定的系统,采用正则系综(NVT);对于可以和大热源交换能量和粒子的系统,采用巨正则系综(mVT)。这是三种常用的系综,各系综在相宇中的分布密度函数均已得出。量子统计与经典统计的研究对象和研究方法相同,在量子统计中系综概念仍然适用。区别在于量子统计认为微观粒子的运动遵循量子力学规律而不是经典力学规律,微观运动状态具有不连续性,需用量子态而不是相宇来描述 。
‘伍’ 热力学统计物理中微正则系综、正则系综、巨正则系综的关系!
正则系综,是组成系综的系统是由N个粒子组成的,同温度为T的很大的热源相接触并达到热平衡。也可以这样设想:取大数M个体积为V、粒子数为N 的相同的系统构成系综。
热力学的基础当然是热力学三定律。从热力学第一、第二定律出发,可以得到一系列的麦克斯韦关系,这个也是比较重要的,可以将式子变成想要的形式。再之后就是要知道一些重要的物理量定义——内能、焓、熵、自由能,等等。
(5)统计物理中的系宗是什么意思扩展阅读:
热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=-W+Q时,通常有如下规定:
系统对外界做功,W>0,即W为正值。外界对系统做功,W<0,即W为负值。系统从外界吸收热量,Q>0,即Q为正值。系统对外界放出热量,Q<0,即Q为负值。系统内能增加,△U>0,即△U为正值。系统内能减少,△U<0,即△U为负值。
‘陆’ 为什么要引入系综
系综就是考虑了各个平衡态的系统的叠加。
统计物理是从微观角度开始推广宏观热力学现象,考虑了所有可能的微观态,并排列组合推算出宏观的系统所有状态,把系统所有状态(相当于由许多个分别处于不同状态的系统的叠加)看做一个整体,就是一个系综的状态。引入系综是为了方便用统计物理的方法研究系统。
‘柒’ 量子力学和热力学统计物理有哪些重要的概念和结论
量子力学
波和粒子
振动粒子的量子论诠释
物质的粒子性由能量E 和动量p 刻划,波的特征则由电磁波频率γ 和其波长λ 表达,这两组物理量的比例因子由普朗克常数h(h=6.626*10^-34J·s) 所联系。
E=hγ , E=mc^2 联立两式,得:m=hγ/c^2(这是光子的相对论质量,由于光子无法静止,因此光子无静质量)而p=mv
则p=vhγ/c^{2}(p 为动量)
粒子波的一维平面波的偏微分波动方程,其一般形式
量子力学
为
dξ/dx=(1/γ)(dξ/dt) [5]
三维空间中传播的平面粒子波的经典波动方程为
dξ/dx+dξ/dy+dξ/dz=(1/γ)(dξ/dt) [6]
波动方程是借用经典力学中的波动理论,对微观粒子波动性的一种描述。通过这个桥梁,使得量子力学中的波粒二象性得到了很好的表达。
经典波动方程1,1'式或[6]式中的u,隐含着不连续的量子关系E=hγ和德布罗意关系λ=h/p,由于u=γλ,故可在u=vλ的右边乘以含普朗克常数h的因子(h/h),就得到
u=(γh)(λ/h)
=E/p
德布罗意
等关系u=E/p,使经典物理与量子物理,连续与不连续(定域)之间产生了联系,得到统一 .
粒子波 德布罗意物质波
德布罗意关系λ=h/p,和量子关系E=hγ(及薛定谔方程)这两个关系式实际表示的是波性与粒子性的统一关系, 而不是粒性与波性的两分.德布罗意物质波是粒波一体的真物质粒子,光子,电子等的波动.
海森堡测不准原理
即物体动量的不确定性乘以其位置的不确定性至少为一个确定的常数。
测量过程
量子力学与经典力学的一个主要区别,在于测量过程在理论中的地位。在经典力学中,一个物理系统的位置和动量,可以无限精确地被确定和被预言。至少在理论上,测量对这个系统本身,并没有任何影响,并可以无限精确地进行。在量子力学中,测量过程本身对系统造成影响。
要描写一个可观察量的测量,需要将一个系统的状态,线性分解为该可观察量的一组本征态的线性组合。测量过程可以看作是在这些本征态上的一个投影,测量结果是对应于被投影的本征态的本征值。假如,对这个系统的无限多个拷贝,每一个拷贝都进行一次测量的话,我们可以获得所有可能的测量值的机率分布,每个值的机率等于对应的本征态的系数的绝对值平方。
由此可见,对于两个不同的物理量A和B的测量顺序,可能直接影响其测量结果。事实上,不相容可观察量就是这样的,即 。
不确定性
最着名的不相容可观察量,是一个粒子的位置x和动量p。它们的不确定性Δx和Δp的乘积,大于或等于普朗克常数的一半:
海森堡1927年发现的“不确定性原理”,也常称为“不确定关系”或者“测不准关系”,说的是两个不对易算符所表示的力学量(如坐标和动量,时间和能量等),不可能同时具有确定的测量值。其中的一个测得越准确,另一个就测得越不准确。它说明:由于测量过程对微观粒子行为的“干扰”,致使测量顺序具有不可交换性,这是微观现象的一个基本规律。实际上,像粒子的坐标和动量这样的物理量,并不是本来就存在而等待着我们去测量的信息,测量不是一个简单的“反映”过程,而是一个“变革”过程,它们的测量值取决于我们的测量方式,正是测量方式的互斥性导致了测不准关系。[7]
机率
通过将一个状态分解为可观察量本征态的线性组合,可以得到状态在每一个本征态的机率幅ci。这机率幅的绝对值平方|ci|2就是测量到该本征值ni的概率,这也是该系统处于本征态的概率。ci可以通过将投影到各本征态上计算出来:
因此,对于一个系综的完全相同系统的某一可观察量,进行同样地测量,一般获得的结果是不同的;除非,该系统已经处于该可观察量的本征态上了。通过对系综内,每一个同一状态的系统,进行同样的测量,可以获得测量值ni的统计分布。所有试验,都面临着这个测量值与量子力学的统计计算的问题。
同样粒子的不可区分性和量子纠缠
往往一个由多个粒子组成的系统的状态,无法被分离为其组成的单个粒子的状态,在这种情况下,单个粒子的状态被称为是纠缠的。纠缠的粒子有惊人的特性,这些特性违背一般的直觉。比如说,对一个粒子的测量,可以导致整个系统的波包立刻塌缩,因此也影响到另一个、遥远的、与被测量的粒子纠缠的粒子。这个现象并不违背狭义相对论,因为在量子力学的层面上,在测量粒子前,你不能定义它们,实际上它们仍是一个整体。不过在测量它们之后,它们就会脱离量子纠缠这状态。
量子脱散
作为一个基本理论,量子力学原则上,应该适用于任何大小的物理系统,也就是说不仅限于微观系统,那么,它应该提供一个过渡到宏观“经典”物理的方法。量子现象的存在提出了一个问题,即怎样从量子力学的观点,解释宏观系统的经典现象。尤其无法直接看出的是,量子力学中的叠加状态,如何应用到宏观世界上来。1954年,爱因斯坦在给马克斯·波恩的信中,就提出了怎样从量子力学的角度,来解释宏观物体的定位的问题,他指出仅仅量子力学现象太“小”无法解释这个问题。
这个问题的另一个例子是由薛定谔提出的薛定谔的猫的思想实验。
直到1970年左右,人们才开始真正领会到,上述的思想实验,实际上并不实际,因为它们忽略了不可避免的与周围环境的相互作用。事实证明,叠加状态非常容易受周围环境的影响。比如说,在双缝实验中,电子或光子与空气分子的碰撞或者发射辐射,就可以影响到对形成衍射非常关键的各个状态之间的相位的关系。在量子力学中,这个现象被称为量子脱散。它是由系统状态与周围环境影响的相互作用导致的。这个相互作用可以表达为每个系统状态与环境状态的纠缠。其结果是只有在考虑整个系统时(即实验系统+环境系统)叠加才有效,而假如孤立地只考虑实验系统的系统状态的话,那么就只剩下这个系统的“经典”分布了。量子脱散是今天量子力学解释宏观量子系统的经典性质的主要方式。
对于量子计算机来说,量子脱散也有实际意义。在一台量子计算机中,需要多个量子状态尽可能地长时间保持叠加。脱散时间短是一个非常大的技术问题。
热力学统计物理
热力学基本规律
热力学系统热力学平衡态
热力学第零定律温度
物态方程
准静态过程功
热力学第一定律内能力学第二定律
熵和熵增加原理
热力学特性函数法及其应用
特性函数
特性函数的特征麦克斯韦关系
开系的热力学基本方程和热力学公式
特性函数法的应用
最大功原理
热力学第三定律
相平衡和化学平衡
热动平衡判据
单元二相系的平衡克拉珀龙方程
气液两相的转变临界点和对应态定律
二级相变厄任费斯脱方程
朗道二级相变理论
液HeⅡ与二流体模型
表面效应对相平衡的影响液滴的形成
超导态—正常态的相变及其热力学理论
临界现象和临界指数
多元复相系的平衡条件吉布斯相律
化学反应平衡条件质量作用定律
不可逆过程热力学
描述方法和局域平衡条件
反应扩散方程
熵平衡方程局域熵增率
线性唯象律昂萨格倒易关系
最小熵产生定理
统计物理学基础
概率分布
统计平均值
二项式分布及其近似表达式
等概率原理
近独立粒子运动状态和系统微观状态的描述
近独立粒子系统的宏观态分布与微观状态数
近独立粒子系统的最概然分布
系综理论
系统微观状态的描述r空间
统计系综刘维尔定理
微正则系综
正则系综
等温-等压系综
巨正则系综开系的热力学公式
系综理论和经典热力学系统
量子统计
涨落理论和涨落耗散定理
非平衡态统计理论
‘捌’ 如何理解系综理论
系统的一种可能的运动状态,可用相宇中的一个相点表示,随着时间的推移,系统的运动状态改变了,相应的相点在相宇中运动,描绘出一条轨迹,由大量系统构成的系综则可表为相宇中大量相点的集合,随着时间的推移,各个相点分别沿各自的轨迹运动,类似于流体的流动。
若系统具有s个自由度,则相宇是以s个广义坐标p(详写为p、p2……ps)和s个广义动量q(详写为q1、q2……qs)为直角坐标构成的2s维空间。在相宇内任一点(p,q)附近单位相体积元内的相点数目D(p,q,t)称为密度函数。D(p,q,t)在整个相宇的积分等于全部相点数,即等于系综所包含的全部系统数N,与时间t无关。定义ρ(p,q,t)=D(p,q,t)/N,称为系综的概率密度函数。ρ(p,q,t)dp dq表示在t时刻出现在(p,q)点附近相体积元dp dq内的相点数在全部相点数中所占的比值,即表示任一系统在t时刻其运动状态处于(p,q)附近的相体积元dp dq内的概率。显然 ,概率密度函数ρ(p,q,t)满足归一化条件∫ρ(p,q,t)dpdq=1。
统计物理学的认为系统的任意宏观量I(t)是相应微观量L(p,q)在一定宏观条件下对系统一切可能的微观运动状态的统计平均值,即I(t)=∫L(p,q)ρ(p,q,t)dp dq。由此可见,经典统计物理的基本课题是确定各种条件下系综的概率密度函数ρ(p,q,t),ρ确定后,即可对相应的热力学系统的宏观性质作出统计描述。这就是统计系综的方法。
‘玖’ 热力学与统计物理的内容简介
本教材是参照综合性大学物理系本科热力学与统计物理课程教学大纲编写的.全书共10章,系统地阐述热力学和统计物理学的基本规律、基本理论和方法,分别从宏观上和微观上描述热力学系统的热现象和热性质.各章的主要内容是:第1、2章热力学基本概念,第零、第一、第二和第三定律,特性函数法;第3章相平衡和相变的热力学理论,化学热力学;第4章线性不可逆过程热力学;第5章统计规律性,概率分布,等概率原理,近独立粒子系统计方法;第6章系综理论;第7、8章系综理论对经典系统和量子系统的应用,第9章涨落理论,相关函数,线性响应和涨落耗散定理;第10章近平衡的非平衡统计理论.部分章节后面给出例题,每章后面附有习题并给出答案。
本书可作为理工科大学和师范大学物理专业或相近专业的教材和参考书,也可供有关研究生、教师等参考。
‘拾’ 统计力学的理论发展
统计力学研究工作起始于气体分子运动论,R.克劳修斯、J.C.麦克斯韦和L.玻耳兹曼等是这个理论奠基人。他们逐步确定了微观处理方法(表征统计力学特性)和唯象处理方法(表征热力学特性)之间的联系。1902年J.W.吉布斯在《统计力学的基本原理》专着中强调了广义系综的重要性,并发展了多种系综方法,原则上根据一个给定系统微观纯力学特性,可以计算出系统的全部热力学量,而且他提出正则系综和巨正则系综的研究对象不局限于独立子系统,对于粒子之间具有相互作用的相依子系统也能处理。
量子力学的发展对于微观粒子中的费密子和玻色子在统计力学中分别建立了费米-狄拉克、玻色-爱因斯坦统计分布律。当量子效应不显着或经典极限条件下 ,两种量子统计分布律都趋近于麦克斯韦-玻尔兹曼分布律。20世纪50年代以后,统计力学又有很大的进展,主要是在分子间有较强相互作用下的平衡态与非平衡态问题。
在非平衡态统计力学研究进展的基础上,尝试从广义变分法的视角建立一套描述非平衡态统计力学的新方法。即以对哈密顿原理进行修正得到的最大流原理为基础,对开放的复杂系统建立新的统计系综,构造出新的势函数,并推导出随机动力学方程,进而得出重整化方程并进行求解,得到自相似的分形结构,从而建立起一个新的统计力学理论框架。以城市系统为例,结合自组织特征映射网络进行结构模式数值分析,展示了新方法处理复杂系统的强大潜力。