1. 重心的概念及性质是
重心,是在重力场中,物体处于任何方位时所有各组成支点的重力的合力都通过的那一点。规则而密度均匀物体的重心就是它的几何中心。不规则物体的重心,可以用悬挂法来确定。物体的重心,不一定在物体上。另外,重心可以指事情的中心或主要部分。
①物理上的重心:物体各部分所受重力的合力的作用点。在不改变物体形状的情况下,物体的重心与其所在位置和如何放置无关。物理上的质心(物体的质量中心),均匀重力场时,重心等同于质心。有规则形状、质量分布均匀的物体的重心在它的几何中心上。
②几何上的重心:又称为几何中心,当物体为均质(密度为定值),质心等同于形心。如:三角形三条中线的交点。
③生活口语中重心:指事情的主要部分,如:工作的中心;抓住重心;工作重心的转移等。[2]
(质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点,质心的位置矢量是质点组中各个质点的位置矢量根据其对应质量加权平均之后的平均矢量。质心不一定要在有重力场的系统中才会有意义,而重心则否。值得注意的是,除非重力场是均匀的,否则同一物质系统的质心与重心通常不在同一假想点上。对于密度均匀、形状对称分布的物体,其质心位于其几何中心处。)[3]
作用
凡人有四肢躯干。头为首。其站立俯仰。亦各有姿势。姿势立。则生重心。重心稳固。所谓得机得势。重心失中。乃有颠倒之虞。即不得机。不得势也。拳术,功用之基础。则在重心之稳固与否。而重心又有固定与活动之分。固定者。是专主自己练习拳术之时。每一动作。一姿势。均须时时注意之。或转动。或进退皆然。重心与虚实本属一体。虚实能变换无常。重心则不然。虽能移动。因系全体之主宰。不能轻举妄动。使敌知吾虚实。又如作战然。心为令。气为旗。腰为纛。太极拳以劲为战术。虚实为战略。意气为指挥。听劲为间牒。重心为主帅。学者。应时时揣摸默识体会之。此为斯道全体大用也。重心活动之谓。系在彼我相较之间。虽在决斗之中。必须时时维持自己之重心。而攻击他人之重心。即坚守全军之司令。而不使主帅有所失利也。
一个物体的各部分都要受到重力的作用。从效果上看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心。
重心的几条性质:
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
5.重心是三角形内到三边距离之积最大的点。
6.(莱布尼兹公式)三角形ABC的重心为G,点P为其内部任意一点,则
3PG^2=(AP^2+BP^2+CP^2)-1/3(AB^2+BC^2+CA^2)
7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则 AB/AP+AC/AQ=3
8.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB^2+BC^2+CA^2)为半径的圆周上
如果用塞瓦定理证,则极易证三条中线交于一点。
如图,在△ABC中,AD、BE、CF是中线
则AF=FB,BD=DC,CE=EA
∵(AF/FB)*(BD/DC)*(CE/EA)=1
∴AD、BE、CF交于一点
即三角形的三条中线交于一点
2. △重心有什么性质
重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。 重心的几条性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为(X1+X2+X3/3,Y1+Y2+Y3/3)。
3. 重心有何性质
重心是三角形三边中线的交点。
性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为(X1+X2+X3/3,Y1+Y2+Y3/3)。
4. 重心有什么性质
重心
一个物体的各部分都要受到重力的作用。从效果上看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心
质量均匀分布的物体(均匀物体),重心的位置只跟物体的形状有关。有规则形状的物体,它的重心就在几何重心上,例如,均匀细直棒的中心在棒的中点,均匀物体的重心在球心,均匀圆柱的重心在轴线的中点。不规则物体的重心,可以用悬挂法来确定.物体的重心,不一定在物体上.
质量分布不均匀的物体,重心的位置除跟物体的形状有关外,还跟物体内质量的分布有关。载重汽车的重心随着装货多少和装载位置而变化,起重机的重心随着提升物体的重量和高度而变化。
重心的几条性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为(1/3,1/3,1/3)。
5. 重心、中心、外心、垂心怎么分有什么特殊性质(需证明过程)
内心是三条角平分线的交点,它到三边的距离相等。
外心是三条边垂直平分线的交点,它到三个顶点的距离相等。
重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。
垂心是三条高的交点,它能构成很多直角三角形相似。
旁心是一个内角平分线与其不相邻的两个外角平分线的交点,它到三边的距离相等。(1)重心和三顶点的连线所构成的三个三角形面积相等;
(2)外心到三顶点的距离相等;
(3)垂心与三顶点这四点中,任一点是其余三点构成的三角形的垂心;
(4)内心、旁心到三边距离相等;
(5)垂心是三垂足构成的三角形的内心;
(6)外心是中点三角形的垂心;
(7)中心也是中点三角形的重心;
(8)三角形的中点三角形的外心也是其垂足三角形的外心。三角形的五心 一 定理
重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍,该点叫做三角形的重心。
外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。
垂心定理:三角形的三条高交于一点,该点叫做三角形的垂心。
内心定理:三角形的三内角平分线交于一点,该点叫做三角形的内心。
旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点叫做三角形的旁心。三角形有三个旁心。三角形的重心、外心、垂心、内心、旁心称为三角形的五心,它们都是三角形的重要相关点。上述的几个结论早在欧几里得时代均已被人发现,欧几里得除垂心定理外,均把它们作为重要定理收集在自己的《几何原本》里。重心物理术语定义:一个物体的各部分都要受到重力的作用。从效果上看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心。物体的重心位置质量均匀分布的物体(均匀物体),重心的位置只跟物体的形状有关。有规则形状的物体,它的重心就在几何重心上,例如,均匀细直棒的中心在棒的中点,均匀球体的重心在球心,均匀圆柱的重心在轴线的中点。不规则物体的重心,可以用悬挂法来确定物体的重心,不一定在物体上。质量分布不均匀的物体,重心的位置除跟物体的形状有关外,还跟物体内质量的分布有关。载重汽车的重心随着装货多少和装载位置而变化,起重机的重心随着提升物体的重量和高度而变化。
过重心的一条直线或切面把物体或图形分成两份,则两份的体积或面积不一定相等。(不是所有过重心的直线或切面都平分物体或图形的面积或体积,例如过正三角形重心且平行一边的一条直线把三角形分成面积比为4:5的两部分。关于这一点,可以用物理学的杠杆原理解释:分成的两块图形的重心分别到三角形重心的距离相当于杠杆的两个力臂,而两图形的面积相当于杠杆的两个力。因为重心相当于两个图形的面积“集中”成的一点(参考重心定义)。如以上的例子,分割成的两个图形重心分别到三角形重心的距离正好等于5:4。如有兴趣,可用几何画板软件画图证明。)物体重心位置的数学确定方法:在某物体(总质量为M)所在空间任取一确定的空间直角坐标系O-xyz,则该物体可微元出i个质点,每个质点对应各自坐标(xi,yi,zi)及质量mi,易知M=m1+m2+‥+mi,设该物体重心为G(X,Y,Z)
则X=(x1m1+x2m2+‥+ximi)/M
Y=(y1m1+y2m2+‥+yimi)/M
Z=(z1m1+z2m2+‥+zimi)/M 重心的作用凡人有四肢躯干。头为首。其站立俯仰。亦各有姿势。姿势立。则生重心。重心稳固。所谓得机得势。重心失中。乃有颠倒之虞。即不得机。不得势也。拳术,功用之基础。则在重心之稳固与否。而重心又有固定与活动之分。固定者。是专主自己练习拳术之时。每一动作。一姿势。均须时时注意之。或转动。或进退皆然。重心与虚实本属一体。虚实能变换无常。重心则不然。虽能移动。因系全体之主宰。不能轻举妄动。使敌知吾虚实。又如作战然。心为令。气为旗。腰为纛。 太极拳以劲为战术。虚实为战略。意气为指挥。听劲为间牒。重心为主帅。学者。应时时揣摸默识体会之。此为斯道全体大用也。重心活动之谓。系在彼我相较之间。虽在决斗之中。必须时时维持自己之重心。而攻击他人之重心。即坚守全军之司令。而不使主帅有所失利也。 三角形的重心重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。
重心的几条性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3
5、三角形内到三边距离之积最大的点。 线段的重心 线段的重心就是线段的中点 平行四边形的重心 平行四边形的重心就是它两条对角线的交点 重心的影响因素1、物体的形状
2、.质量的分布 寻找重心的方法a、悬挂法
只适用于很薄的物体。首先找一根细绳,在物体上找一点,用绳悬挂,划出物体静止后的重力线,同理再找一点悬挂,两条重力线的交点就是物体重心。b、支撑法
有一个点支撑物体,不断变化位置,越稳定的位置,越接近重心。
三角形重心的性质
重心是三角形三边中线的交点1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、等积:重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、重心到三角形的三个顶点的向量和为零。
6. 重心的性质是什么啊
重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z2)/3。
形状不规则、质量不均匀物体重心的确定
(1)悬挂法
只适用于薄板(不一定均匀)。首先找一根细绳,在物体上找一点,用绳悬挂,划出物体静止后的重力线,同理再找一点悬挂,两条重力线的交点就是物体重心。
(2)支撑法
只适用于细棒(不一定均匀)。用一个支点支撑物体,不断变化位置,越稳定的位置,越接近重心。
一种可能的变通方式是用两个支点支撑,然后施加较小的力使两个支点靠近,因为离重心近的支点摩擦力会大,所以物体会随之移动,使另一个支点更接近重心,如此可以找到重心的近似位置。
(3) 针顶法
同样只适用于薄板。用一根细针顶住板子的下面,当板子能够保持平衡,那么针顶的位置接近重心。
与支撑法同理,可用3根细针互相接近的方法,找到重心位置的范围,不过这就没有支撑法的变通方式那样方便了。
(4)用铅垂线找重心(任意一图形,质地均匀)
用绳子找其一端点悬挂,后用铅垂线挂在此端点上(描下来)。而后用同样的方法作另一条线。两线交点即其重心。
7. 重心的概念,性质,特点…
几何学上指三角形的三条中线相交的交点。
重心的几条性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。2.重心和三角形3个顶点组成的3个三角形面积相等。3.重心到三角形3个顶点距离的平方和最小。4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/35.重心是三角形内到三边距离之积最大的点。6.(莱布尼兹公式)三角形ABC的重心为G,点P为其内部任意一点,则3PG^2=(AP^2+BP^2+CP^2)-1/3(AB^2+BC^2+CA^2)7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则 AB/AP+AC/AQ=38.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB^2+BC^2+CA^2)为半径的圆周上。
其它图形重心
三角形的重心就是三边中线的交点。 线段的重心就是线段的中点。平行四边形的重心就是其两条对角线的交点,也是两对对边中点连线的交点。平行六面体的重心就是其四条对角线的交点,也是六对对棱中点连线的交点,也是四对对面重心连线的交点。圆的重心就是圆心,球的重心就是球心。锥体的重心是顶点与底面重心连线的四等分点上最接近底面的一个。四面体的重心同时也是每个定点与对面重心连线的交点,也是每条棱与对棱中点确定平面的交点。
8. 重心的定义和性质是什么
重心定义:
地球上的任何物体都要受到地球的引力,若把物体假想地分割成无数部分,则所有这些微小部分受到的地球引力将组成一个空间汇交力系(汇交点在地球中心)。由于物体的尺寸与地球的半径相比要小很多,因此可近似地认为这个力系是空间平行力系,此平行力系的合力G即物体的重力。
通过实验可以知道,无论物体怎样放置,其重力总是通过物体内的一个确定点一平行力系的中心,这个确定的点称为物体的重心。
如果物体的体积和形状都不变,则无论物体对地面处于什么方向,其所受重力总是通过固定在物体上的坐标系的一个确定点,即重心。重心不一定在物体上,例如圆环的重心就不在圆环上,而在它的对称中心上。
重心的性质
①三角形的重心到边的中心与到相应顶点的距离之比为1∶2。
②重心和三角形三个顶点组成的三个三角形面积相等。
③重心到三角形三个顶点距离的平方和最小(等边三角形)。
④三角形重心是三角形内到三边距离之积最大的点。
9. 什么是重心重心有什么性质请举例说明
重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。
重心的几条性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为(X1+X2+X3/3,Y1+Y2+Y3/3)。