㈠ 解物理题目时 何时可用到微积分
要用微积分,题目中要有微分和积分关系,但如果微量和积分量在题目中是线性关系,同样不需要用到微分和积分。。。如果是非线性的,就只能用微积分解决。
举个例子加速度a和速度V,是积分关系量,V是a对时间的积分。。。
如果说a=8,求8秒后的V,那很简单V=8*8=64(初速度为0),。。。但如果说a=t^2
你就必须用积分来求解V了。。。
原因很简单前者a和v随然是微积分关系但由于a不变,仍保持线性关系,而后者已经不具备线性关系了,你不可能不用微积分来解决。。。
微积分不是什么简便方法,而是一种运算,有微分和积分关系就要用到,需要微积分求解,或建立微分方程求解。。。至于高中以下之所以很少用到,就是因为高中以下物理题全是线性关系,不需要而已,但实际当中很多量之间的关系是非线性的。。。
㈡ 大学物理中计算磁通量磁感应强度什么时候要积分什么时候不积分
原则上都是用积分算的。只不过有些情况下可以简化而已,看起来好像没有积分,而实际上那个简化的式子就是从积分里推导出来的。
比如线电流产生的磁场B=μΙ/2πr,实际上就是安培环路定理得简化。
∫B*dl=μI,积分路径取一个圆,圆上任意一点的切线方向都与B的方向一致,并且由于是等距离处,所以B的大小处处相等,这样积分就可以简化成B*2πr=μI。
计算磁通量一个道理。
㈢ 如何运用微积分解物理题怎么入手 用微积分解物理题的方法
如果是高中的话,我们称此为“微元法”.
即取极小一段(时间),在极小的(时间)内,速度可视为不变,对速度做时间的累积,表示为∑v△t= 然后把能提的提出来(就是不随时间)变化的,把随时间变化的放在∑里面,对时间做累积,最后∑里的东西会能够由条件得出.就完成了.高中的差不多就这样OK了.
其他的类比解法,同理可得.
㈣ 做大学物理时,什么时候应该用积分,什么时候用微分,什么时候不用
总么跟你说呢
变化连续状态 某条件下需要你精确到一个数值的时候你需要求微分
比如求解某时刻速度 加速度等
需要你求总和且变化是连续的就需要积分 比如求解场强,求解 路程
有时候这两种方法可以相互配合求解
㈤ 大学物理 学了力和运动这一章 发现有时候要用到积分 可是我搞不清楚什么时候要积分 还是大物所有的题
一般变力,变加速都会涉及到积分,积分是工具,你学懂了大物,做题推导着推导着有时候需要积分的就自然而然会出来的
㈥ 微积分在高中物理中的运用
伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。
微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。
1、解决变速直线运动位移问题
匀速直线运动,位移和速度之间的关系x=vt;但变速直线运动,那么物体的位移如何求解呢?
例1、汽车以10m/s的速度行驶,到某处需要减速停车,设汽车以等减速2m/s2刹车,问从开始刹车到停车,汽车走了多少公里?
【解析】 现在我们知道,根据匀减速直线运动速度位移公式 就可以求得汽车走了0.025公里。
但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即 。
【微积分解】汽车在减速运动这段时间内速度随时间变化的关系 ,从开始刹车到停车的时间t=5s, 所以汽车由刹车到停车行驶的位移
小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直线运动,只要结合物理知识求速度关于时间的函数,画出v-t图像,找“面积”就可以。或者,利用定积分就可解决.
2、解决变力做功问题
恒力做功,我们可以利用公式直接求出 ;但对于变力做功,我们如何求解呢?
例2:如图所示,质量为m的物体以恒定速率v沿半径为R的竖直圆轨道运动,已知物体与竖直圆轨道间的摩擦因数为 ,求物体从轨道最低点运动到最高点的过程中,摩擦力做了多少功。
【解析】物体沿竖直圆轨道从最低点匀速率运动到最高点的过程中,在不同位置与圆环间的正压力不同,故而摩擦力为一変力,本题不能简单的用 来求。
可由圆轨道的对称性,在圆轨道水平直径上、下各取两对称位置A和B,设OA、OB与水平直径的夹角为θ。在 的足够短圆弧上,△S可看作直线,且摩擦力可视为恒力,则在A、B两点附近的△S内,摩擦力所做的功之和可表示为:
又因为车在A、B两点以速率v作圆周运动,所以:
综合以上各式得:
故摩擦力对车所做的功:
【微积分解】物体在轨道上受到的摩擦力 ,从最低点运动到最高点摩擦力所做的功为
小结:这题是一个复杂的变力做功问题,利用公式直接求功是难以办到的。利用微积分思想,把物体的运动无限细分,在每一份位移微元内,力的变化量很小,可以忽略这种微小变化,认为物体在恒力作用下的运动;接下来把所有位移内的功相加,即“无限求和”,则总的功就可以知道。
在高中物理中还有很多例子,比如我们讲过的瞬时速度,瞬时加速度、感应电动势、引力势能等都用到了微积分思想,所有这些例子都有它的共性。作为大学知识在高中的应用,虽然微积分高中不要求,但他的思想无不贯穿整个高中物理。“微积分思想”丰富了我们处理问题的手段,拓展了我们的思维。我们在学习的时候,要学会这种研究问题的思想方法,只有这样,在紧张的学习中,我们才能做到事半功倍。
㈦ 做大学物理时,什么时候应该用积分,什么时候用微分,什么时候不用
总么跟你说呢
变化连续状态 某条件下需要你精确到一个数值的时候你需要求微分
比如求解某时刻速度 加速度等
需要你求总和且变化是连续的就需要积分 比如求解场强,路程
有时候这两种方法可以相互配合求解
㈧ 一道物理题呀,是不是要用积分求解答过程
不用啊,音轨长度是半径的2pi倍,因此是等差数列,直接用等差数列求和公式就行了。
因此,L总=(2.2+5.6)/2*2*pi*((5.6-2.2)*650*10)=5.416*10^5cm
t总=541617.96/100/1.3=4166s
2:5cm处角速度为1.3/0.05=26rad/s;
角加速有点麻烦。设线速度V,5cm处半径R,下一个轨迹半径R'=R+deltaR,因此角速度差异deltaV为
V/(R+deltaR)-V/R=-V*(R+deltaR-R)/(R*R+R*deltaR)。由于deltaR<<R,因此deltaV=-V*deltaR/(R*R)。
时间deltaT=2pi*R/V
因此角加速=-V^2*deltaR/(2piR^3)=-1.3^2*(1/650/1000)/(2*pi*0.05^3)=-0.0033rad/s
希望没有算错。
实际光盘是螺旋轨道,那就得积分了。但这样等效误差极小。