A. 学习物理学史的意义
一、物理学史的研究有重要意义。一般来说,物理学是自然科学中的一门基础学科,处于核心地位。科学史很重要的部分就是物理学史,所以,研究物理学史有助于阐明科学发展的规律,有助于了解科学与社会的关系,科学与技术的关系,以及科学与哲学的关系。从学习物理学的角度来说,了解物理概念和理论的发展,不但可以加深对这些概念和理论的理解,而且可以进一步认识物理学这门学科的特点。作为未来物理学工作者或科技工作者的一员,更应该把握住物理学发展的趋势,了解它的动向,使自己自觉地推动物理学前进。着名美籍华裔物理学家杨振宁教授在谈到物理学史的意义时说:“中国物理学的发展中有些问题,根据我的普遍接触,有这么一个印象:前些年对国外的东西什么都想知道,结果弄得有点眼花缭乱,无所适从。其实有些介绍进来的东西,只是发展过程中的噪音,一转眼就消失了。
“其结果是对事物的来龙去脉弄不清楚,对主干发展看不清楚。可是不了解主干的发展,就不容易培养出有独到见解的学生。他们就会老是跟着许多噪音在乱转。现在国内学理论物理的学生那么多,太多了,我看他们成功的机会很少。如果能真正对国外的发展作些切实的介绍,我看会更有意义。”①
物理学和其他各门自然科学一样,正在发展之中,昨天的事情就是历史。了解过去,为的是把握住发展的脉络,预测未来的动向,从而端正自己的航向。杨振宁先生的讲话对我们物理学工作者很有实际意义,值得我们深思。
二、学习和研究物理学史,要注重历史资料。说话要有根据,不可想当然,乱发挥。要从史实出发,从史料的分析中找结论,切不可拿史料来凑结论。物理学史是一门科学,我们要持科学态度,实事求是,忌主观武断,提倡严谨作风,这样才能使物理学史真正发挥指导和借鉴的作用。这一点对从事物理学史工作的人有现实意义,对学习者和任何与之有关的各门学科的研究者,也是应该注意的。
三、学习物理学史不能代替本门业务的学习,只能对本科学习起辅助作用。物理学的课程基本上是按逻辑体系讲述,而物理学史则是按历史顺序编排。在横向联系的基础上再加一些纵向联系,使我们的知识立体化,知识就必然会得到加深和拓宽。这一补充确有价值,但不可喧宾夺主,否则就会本末倒置,变成夸夸其谈,舍本求末,失去了原来的用意。
四、学习物理学史,不要满足于增添了某些历史知识,也不只是为了加深对物理概念和规律的认识,更重要的是要从物理学的发展中找观点,找方法,找榜样,从前人的经验中受到启发。为此我们的学习应该是:
(1)靠自学,靠自己收集资料,自己研究,独立思考:
(2)注重分析,开展学术争论,以开阔思路。切忌把物理学史的教学变成填鸭式,背诵条文,人云亦云。
(3)要注意学会用历史的方法。历史方法是科学研究的重要方法之一。收集和分析历史资料,是科学研究的一项基本功。每一位年轻人在做学位论文时大概都要首先对本门学科作一历史的回顾和发展的综述,以说明自己工作的意义,这就是历史的方法,物理学史的学习可以帮助你掌握这个方法。
五、找观点,就是学习前辈科学家在推动科学前进时是受什么思想支配的。他们为什么要研究这些问题?他们怎样看待这些问题?他们怎样处理理论与实验之间的分歧?他们怎样分析事物的矛盾?他们奋斗的目标是什么?例如:我们可以问问:他们追求的目标是什么?回答也许是:
(1)自然界的统一性。牛顿把各种力归结为近距力和远距力,他把天体吸引力和地球重力统一到一起,归结为万有引力。而万有引力和电力,磁力之间的统一性虽未找到,却启示了后人发现电力和磁力的平方反比定律。奥斯特在1820年发现电流的磁效应,并非偶然,而是受19世纪一种科学思潮的影响,认为自然力是统一的。他在1803年曾说过:“我们的物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的任何现象的零散汇总,而我们将把整个宇宙容纳在一个体系中。”他一直在寻找电和磁这两大自然力之间的联系,终于在实验中观察到了电流的磁效应。
法拉第也笃信自然“力”的统一性。在这一思想的推动下,他几经挫折,在1845年发现了磁场对光学偏振面的影响。这是第一个磁光效应,对电磁理论的发展起了相当大的作用。因为这个现象表明电,磁和光之间确实存在某种联系。他还信奉物理“力”的不可灭性和可转化性。他虽然在探索电力和重力之间的联系上未获成功,但他的思想发人深省。万有引力和电磁力以及其他几种力,例如弱相互作用和强相互作用能否取得统一,这正是当代物理学研究的重大课题之一。
(2)物理学家追求的第二个目标是自然规律的普遍性。例如对守恒定律的认识就是如此。从古代起自然哲学就有守恒的观念。能量守恒与转化定律,质量守恒与质能转化,动量守恒与角动量守恒等定律(或原理),都是物理学深入发展和综合研究的结果,而守恒的实质在于对称性,例如:
时间平移对称性(不变性)导致能量守恒;
空间平移对称性(不变性)导致动量守恒;
空间转动对称性(不变性)导致角动量守恒;
电磁场在规范变换下的对称性(不变性)导致电荷守恒,等等。
随着研究的深入,人们发现较低层次的对称性往往要进化到较高层次的对称性,相应的较低层次的守恒定律往往在一定条件之外并不守恒,而要归并到更高层次的守恒定律,例如:
机械能守恒定律→能量守恒与转化定律→质能转化关系;
1956年李政道,杨振宁发现宇称不守恒→CP联合守恒;
1964年克罗宁发现CP联合不守恒→CPT联合守恒。
从低级走向高级,从特殊走向一般,从表及里,从粗到精,这就是物理学进化的规律。
(3)物理学家追求的第三个目标是理论与实验的统一。在物理学中有一条准则,就是检验理论的客观标准,不是别的,而是实验。许多物理学家对于刚出现的新理论往往持怀疑态度,但一经实验证实就转而站在新理论一边。不过这里也要指出,并不是所有实验都是正确无误的。个别实验难免会有错误或料想不到的误差,这时必须慎重对待。爱因斯坦在对待考夫曼的电子质量随速度变化的实验结果时就采取了正确态度。实验是检验理论的标准这一提法没有错,应该全面地理解。检验理论的标准并不就是指某个具体的实验,正确地应该说实验作为一个整体对理论起检验作用。
六、找方法,就是从前辈科学家的创新活动中学习他们处理问题的方法。例如:
他们是怎样抓住新课题,从而把握科学发展新动态,发现新规律,新现象;
他们是怎样借鉴前人,总结历史的经验教训,从而找到新的途径;
他们是怎样对待矛盾,从矛盾的对立中找到突破口;
他们是怎样设计新实验,从而取得判决性实验结果的。
具体的研究方法也很值得学习:
对比方法是探索新现象的规律常用的方法。人们用移植的办法大大加快新兴领域的发展速度;
理想实验是科学推理的重要手段,反证法也是逻辑推理的有力工具。
方法有多种多样,为了达到某一目标,既可以采用这种方法,也可以采用那种方法,因势利导,辩证下药,通过物理学史的学习,可以进行比较,使自己从前人的活动中吸取经验,以利日后在需要时参考借鉴。你在平时注意学习研究,到了关键时刻,自会产生应有的作用。电子衍射的发现者之一G.P.汤姆生指出:“研究科学史有许多理由,最好的理由是要从典型例子看科学发现是怎样作出的。我们需要了解许多实例,因为道路有各种各样,很难找到什么捷径”。
七、找榜样,当然包括从各种典型案例中找典型人物,引为自己的榜样,树为自己的学习楷模。我这里指的是更广泛的涵义,既包括科学家的治学创业,也涉及他的为人处世。大科学家也是人,从小长大,各有其成长的过程。他们的成长道路对学生和教师有特殊的参考价值。科学家也有自己的喜怒哀乐。他对待困难和逆境的态度,他对名誉地位的看法,他坚持不懈,顽强拼搏的毅力,他灵活机动的风格,他敏锐的观察和一针见血的洞察力,他对祖国对人民的热爱,他的献身精神,等等,都值得我们学习和借鉴。
榜样的力量是巨大的。我们当然可以抽象出他们成功的共同要素,提炼成几条座右铭,但是重要的并不在于现成的结论,而在真正有所体会,变成自己的信条。所以应该是自己去吸取经验,真正做到心悦诚服。最好能深入了解一两位或几位物理学家,以他们为榜样,并在自己的实践中努力照着榜样做,这样你就可以得到鼓舞自己的力量。
1986年诺贝尔化学奖获得者李远哲说过,他以前爱看科学家传记,其中居里夫人特别令他感动。
杨振宁在一次讲话中说:“常常有同学问我做物理工作成功的要素是什么?我想要素可以归纳为三个P:
Perception, Persistence, and Power。
“Perception”——眼光,看准了什么东西,就要抓住不放;
“Persistence”——坚持,看对了要坚持;
“Power”——力量,有了力量能够闯过关,遇到困难你要闯过去”。①
爱因斯坦有一句名言,也许大家早就知道,有人问他成功的“秘诀”,他写了一个公式:
A=X+Y+ZA代表成功,X代表艰苦的劳动,Y代表正确的方法,Z代表少说空话。这个公式概括了爱因斯坦的科学生涯。
1979年诺贝尔物理奖获得者之一,弱电统一理论的提出者之一温伯格说过:物理学家很重要的一个素质是“进攻性”——对自然的“进攻性”。
学习物理学史,要比读科学家传记,对科学家的认识来得更深刻、更全面,因为这样就可以从科学发展的历史背景中去了解科学家的一生,了解他的活动和他所发挥的作用。我们要正确认识人物的历史作用,不要盲目崇拜,不要把大科学家神秘化,以为望尘莫及,高不可攀。他们确实比我们高明,但并不是不可学,当然学了也未必能有他们那样的机会作出那样伟大的贡献,但是他们的精神总是可以运用到各种岗位上,指导你根据自己的条件做出相应的成就。
最后一点是要把自己摆进去,使物理学史的学习形成促进自己前进的动力。
学习物理学史,你应该有一种亲切感,似乎身临其境。那些历史人物和历史事件活生生地在你面前重现。你可以扪心自问,如果我自己处于那个时代遇到那样的问题我会怎样做,或者说今天我遇到类似的事情我该怎样做?
当然由于时代的不同,前人和我们的境遇会有相当大的差别。但是只要你用历史的眼光,对历史的条件作恰当的分析,你还是可以从中吸取智慧的。
学习物理学史可以使我们眼界开阔,思想活跃。
学习物理学史还应该联系我们自己的使命。我们认识到科学与社会的关系,自然会增加发展我国科学事业的紧迫感。我们中国起步比人家晚,就应该研究人家发展的历史,了解人家走过的道路,以便迎头赶上,不重犯人家犯过的错误。
B. 物理学史引入物理理论教学的意义
首先,可以引导学生站在那些物理科学家的角度分析当时的物理理论问题,这有助于学生对所学物理理论的理解和记忆,使学生具有一种参与感和互动性,激发学生的学习兴趣。
其次,有利于学生掌握物理学这门基础自然科学发展的来龙去脉,以一种整体性的眼光更好地学习和发展这门学科。
再次,物理学史中一位位伟大的科学家、诺贝尔奖获得者的人生事迹、理论魅力,比如牛顿、爱因斯坦、波尔,可以大大激发学生学习物理的兴趣和动机,希望有一天也成为像他们一样的伟大人物。
还有,其实这样一批人不仅仅是物理学家,有些还在文学、音乐、哲学方面颇有建树,这样可以使学生从狭隘的物理学知识结构中跳出来,以更高更广的视野努力学习其他各门学科。
物理学史引入物理理论教学好处多多,这些只是我的浅见,希望您能想到更多哦!
C. 结合初中物理教学,谈谈联系学生生活开发课程资源的意义
开发和利用各种课程资源对物理课程的实施起到非常重要的作用,应该将物理课程资源的开发和利用纳入物理课程实施的计划之中,为学生生动、活泼、主动地发展提供丰富多彩的课程资源。
推荐一个免费初中教育资源分享网站,学习口袋网。网站拥有丰富的试题、课件、教案等初中教学资源,而且所有的资源均可免费下载。
分享下免费的初中在线教育资源:网络网盘链接: https://pan..com/s/1V5gDa-VsrKWmb0DX36KO_A
D. 简述物理教学论的学科性质与意义
物理学是人类对于自然界无生命物质的属性、结构、运动和转变的知识所作的规律性总结.人类对物理学的研究可分为两个阶段:经典物理学的研究和量子物理学的研究.经典物理学的研究特点是通过人们感官的感知或通过人为的装置对物质结构、运动形式的直接观察,得出规律性或特殊性的结论.量子物理学的研究特点是通过精密准确的、按照人为安排的高科技仪器的实践检测,而间接认识到组成物质内部结构的基本粒子运动和转变的规律性或特殊性的结论.所以说物理学是一门实验科学.因此,我们必须遵从物理现象、知识、规律的发现、研究的方法,采取相应的方法去学习物理.即:从课内外的活动性学习来讲,必须做到以下几点:
①.乐于观察,善于观察,记录观察、分析观察、追求解决观察中发现的问题;积极培养自己的观察能力.如对彩虹的观察,通常人们只注意欣赏他的美丽,而真正的观察必须带有一定的目的——为了研究它的彩色形成原因和虹与霓的彩色排列顺序与什么有关、或为了研究它为什么会形成半圆弧形状、或为了研究彩虹的半径大小的决定因素、或为了研究彩虹与大气气候的关系、…… ;还要抓住与目的相关的主要现象进行观察,实事求是地记录观察结果;在分析过程要抓住主要因素,忽略次要因素,以已有的知识和规律对现象进行分析,找出所观察现象的原因或规律;若用已有的知识不能解决所观察的现象,则必须通过重复实验,观察总结出新的规律性的东西和原因.
②.重视实验、积极实验、认真实验、尊重实验事实、科学处理实验数据;积极培养自己的实验能力、科学的思想方法和科学精神.如我们将在高一物理学习中遇到的《验证牛顿第二定律》实验,他将使我们学会怎样去校验一个物理定律是否正确,学到做物理实验的基本方法,做实验不仅要动手,而且要动脑去设计、去理解、去科学记录数据和处理数据、还要学会分析概括出实验结论;只有积极动手做好这个实验才能加深对牛顿第二定律的理解,只有认真了才能得到符合事实的结果,只有真正尊重实验事实数据才能发现本实验存在误差、才能理解和找到产生误差的原因、或者发现实验过程中出现的操作失误,只有学会科学的思想方法才能设计实验并通过科学处理数据直观地得出实验结论;通过实验我们才能掌握相关仪器的使用和进一步明白它的原理,通过实验我们可以达到理论联系实际的目的,可以体验科学家进行科研实验的科学思想和精神.
高中物理与初中物理的最大差异是:对物理量和物理规律的研究定量化、抽象化、表述的严谨科学化、实验的精确化、解题过程的论文式规范化、物理情景动态化.物理学是一门定量科学.所以,要学好高中物理还必须做到以下几点:
①.要重视理解.所谓理解就是要弄懂物理概念和规律的确切含义,以及物理规律的适用条件,能用适当的形式(如文字、公式、图像或数表)进行表达.并能解释和说明有关自然科学现象和问题.失去了理解能力就失去了其它能力的基础.下面就理解的方法作几点阐述.
——Ⅰ.怎样理解物理概念或物理量的定义?一般物理概念的定义可分为比值定义法、乘积定义法、文学语言定义法.一般情况下,描述物质属性的物理量采用比值定义法.理解这种方式定义的物理量与比值法的区别在于:它不是反映基本属性,它反映的是这些物理量的决定因素;并且都有自己的成立条件和适用范围;每个物理量符号都有确切的含义;应用于解决实际问题时因情况的不同有不同的解法.如W=FScosα可理解为:功跟作用在物体上的力成正比,跟物体的位移成正比,跟力和位移之间的夹角的余弦成正比;或理解为:功的大小等于作用在物体上的力跟物体在力的方向上的位移的乘积;该公式在F为恒力或平均力的条件下才成立;当对物体做功的力为变力时,取平均力或分成若干阶段求解后再求代数和;若力的大小恒定,方向始终与速度方向在同一直线上,则该力做功不是与位移相关,而是与路程相关;若对物体做功的恒力是场力,则做功与路径无关,取决于始末位置的沿场力方向的距离;若求合力的功方法有好几种——先求合力后求功、或先求每个力的功再求所有功的代数和、或先求各阶段的功再求所有阶段功的代数和;或先建立直角坐标系然后分解力,再求各方向的合力做的功,最后求各向功的代数和.有的物理概念或物理量其意义是广义的、具有一定性质、特征、条件、关系的,无法用一个数学表达式加以表达,必须用文学语言加以概述——文学语言定义法.如:力、运动、振动、曲线运动、力臂、万有引力、静电感应、静电平衡、电磁感应、光电效应、干涉、衍射、裂变、聚变、链式反应、……,理解这些概念的定义,应抓住能反映物理现象的性质、特征、条件、关系的关键字词,区分容易混的概念或错误的经验印象,把它与物理事实对应起来,形成一定的物理模型或形象.这样,我们就可以熟练地从相近的物理表述中辨析出正确的说法.如周期、频率、放射性元素的半衰期、交流电的有效值、……等物理量的定义也是如此;要具体计算它的值,就必须依据不同的物理情况进行分析、列式求解.
——Ⅱ.怎样理解物理规律?物理学通常用文学语言表述、公式表述、图像表述或数表表述的方法来描述物理规律.如简谐运动的规律可从动力学的角度用文学语言表述为:“如果一个质点在平衡位置附近来回往复运动,始终受到一个指向平衡位置的回复力作用,且回复力的大小与质点离开平衡位置的位移成正比,则这个振动就是简谐运动”.用数学语言表述为:“F= - kx”.用图像表述为右图(1)所示. 光从这三方面来理解物理规律还不够,还要从实际物理过程中的每一个物理量的变化规律和物理图景的想象图示来理解.如简谐运动的位移、回复力、加速度、速度、动能、势能、机械能、时间、对称性、v-t图像、x-t图像、振幅、周期、频率、几种常见模型以及跟非简谐振动的比较.还要理论联系实际地去理解.如哪些振动可以近似看作简谐运动?简谐运动有哪些实际应用?研究简谐运动有什么价值?除此外,有的物理规律用于解决实际问题时常有很多不同的方法.如牛顿第二定律,可据矢量性进行分解应用,也可以按隔离法或整体法应用牛顿第二定律解题,还可利用牛顿第二定律的瞬时性分析解决变加速运动中的加速度问题、超重问题、连接体问题、圆周运动问题、天体问题、振动问题、撞击问题…….不同的物理规律有不同适用条件,且不能只记表达规律的公式而不顾条件.
——Ⅲ.怎样理解物理信息资料?物理课本中的阅读资料、物理练习题、物理课文、科普杂志、中学生学习读物等都是我们中学生为学好物理应该阅读的.但阅读这些物理信息资料与阅读其它文章不同,若是物理学史、或科学家传记,必须读懂时代背景与科学发现的艰辛,科学家的科学精神、科学思想与科学方法;读懂科学发现的成果及其社会价值;在理解其精髓的同时内化成自己的思想、世界观、和追求真理的动力.若是物理科学的信息资料、或习题,应依据所提供的信息资料正确想象物理情景和过程,建立起正确的物理模型,分析已知信息跟要求解的问题之间的联系,或理出资料所描述的物理量之间的关系,用数学语言加以表述;再利用已有的规律与新理出的规律联系起来解决问题.切忌用已有的经验或既成模式代替理解的思维过程,以避免产生错误的结论.
②.学会自学.不学会自学就不能培养思维能力,不通过自学很难形成对物理概念规律的深刻理解和实现对知识的正确运用.自学的过程要做到:按上述理解的要求理清概念,罗列出概念的内涵和外延、与已有的相似概念进行比较区分;列出所学物理规律的内容描述和适用条件;通过试应用规律解题,体会运用规律时应注意的问题;写出相关演示实验或应用设备的原理;应用数学工具和逻辑推理去推导或证明相关的推论.
③学会推理和表述.从高考的能力要求和社会工作的能力要求来看,推理是分析解决问题的关键.在学习物理的过程中要杂实地进行解题训练,对作业不匆忙应付.要追求解题过程严密的想象、推理和熟练的逻辑思维,力争对推理得出的结论进行正确的判定和尽可能准确简练的表述.一切无法表述的现象都是不会达到推理最高层次的表现.
④学会分析综合与评价 所谓分析综合,就是力求能独立地对所遇到的物理问题进行具体分析;弄情所给物理问题中的物理状态、物理过程、物理情境,找出其主要作用的因素及有关条件;能够把一个复杂的问题分解成若干个简单的问题找出它们之间的联系;能够灵活的运用多方面的物理知识综合解决所给的问题.用我们通常的一句俗话来说就是生题熟做,熟题生做.遇到很熟悉的问题要把它当作陌生问题来具体分析解决,防止套题;遇到陌生的复杂问题要把它分解为若干很熟悉的问题来解决,防止出现茫然而无从着手.所谓评价,就是通过物理学习产生对物理知识的理解、内化,并纳入已有的知识范畴,转化为自己对事物判别的价值观;同时能对自己的学习成果作出价值判断,通过类比区分相近知识,学会对别人或自己的解题过程的做出正误评判,并对复杂物理问题的不同解法的依据、思路、方法技巧作出优劣评定.只要我们的学习存在以上所说的高级心理过程,我们学到的知识就能产生作为.
⑤积极培养自己灵活运用数学工具解决物理问题的能力.
⑥做好物理作业 一个小实验、或一个研究性学习课题、或一道习题,都是一个小科研课题,一个课题的解决过程及其表述,就相当于写一篇小论文.它要求根据可靠、逻辑严密、推理条理清晰、物理语言和数学语言的运用准确简洁、过程的书写规范、结论明晰.平常的学习中,我们如果能按这样的要求去严格地完成作业,则我们所学到的物理知识将是完整的、严密的、灵活的、能熟练运用的、已纳入自己的知识和能力范畴的可以产生思想的一部分;我们的能力就会大大提高,我们就再也没有物理太难学的感觉了.
物理学蕴含着极其丰富的科学思想和科学方法.物理思想有:对称思想、类比思想、守恒思想、量子思想、相对思想、系统思想、统计涨落思想、互动转变思想、……等.物理方法有:模型法、整体与隔离法、等效法、临界法、分解与合成法、假设法、图象法、极限法、……等.我们必须通过物理学习获得物理思想和物理方法.这就要求做到:①.认真预习.做好预习笔记,列好不能解决和有自己想法、质疑的问题;尝试自学运用知识的能力.②认真听课.听课是学习物理的最关键环节,一定要注意老师强调的重点.这往往是高考的重点,也是最能体现物理思想方法的地方.带着预习问题来学.记性不如烂笔头,做好听课笔记,特别要记下哪些重要的特殊理解点、重要物理思想方法.积极思考和参与课堂活动、发表自己的见解、学会流利简练地进行口头表述.③.课后要积极地去提炼学习所得、实践相关的物理思想和方法,并总结成自己的东西.
E. 物理实验在物理教学中有着哪些重要的作用
一、 物理实验可以激发学生的学习兴趣、让学生在快乐中学习。
二、 物理实验可以培养学生团结协作的能力,养成互帮互助的好习惯。
三、 物理实验可以培养学生的创新能力和探索能力。
四、物理实验能培养学生理论联系实际的能力。
实验是物理教学的一个重要的组成部分,是提高学生学习兴趣,培养学生团结协作、创新能力的一个重要手段,在物理教学中占有极其重要的地位。
F. 什么是物理意义
无论何时我们“感受到”重力,我们总会接触到其他表面,可能是地面、椅子、宇航员的躺椅,我们可能坐在沙滩上或者在一个火箭里加速。“一个物体的重力,在任何情况下,是由支撑它的物体所施加的接触力。”这是接触阵营对重力的定义。你的重力照这种方式来定义的话,就是由一副置于你和支撑你的任何事物(一般是地面)之间的普通秤上所测量出的值。当你站在地表上,除非你站在南极或者北极,你的体重不会完全等同于你所受到的地心引力。
地球用mg的力拉着m的质量,表格中用标有“重力”的接触力支撑着m的质量。应用牛顿的“F = ma”给出下列:
mg-重力=m×a(加速度)
我们将牛顿定律应用于太阳系完全惯性坐标系中,如果物体不在两极上,它会随着地球转动轻微加速。因此它的重力不完全等于mg。
这种重力观念认为让我们下沉是由于某物在推动我们的身体。如果没有东西推动,我们不会下沉;例如地面对我们的脚施加压力,然后这种压力通过我们的身体向上传递,迫使关节和肌肉去运用肌肉力量保持姿势:我们感受到重量。这种接触力取决于你的运动状态。当你自由落体时——对于人类来说并不是一种普通的经历——不接触任何东西,因此你没有重量感;你感到失重。你可以尝试在下落时站在一副秤上,但是你不会压着他们,因此读数为0——这正是你在失重时的预期。
相反,如果你是一个躺在高速加速火箭里的一名宇航员,在你身上的接触力和你必须去做的努力来支撑你的身体(例如,保持正常的呼吸)显着增加,这将再次由一副你和你座位之间的秤显示出。接触阵营会说你看到漂浮在航天飞机里面或者拴在哈勃望远镜外面的宇航员都是失重的,在火箭发射过程中宇航员的重力剧增,但仍需努力保持头脑清晰。一个物体的重力通过一副置于物体和支撑面之间的秤会被不断地被修正。我们当然可以把秤放在任何地方,但是如果放在能取最大读数值的地方,这最大值就是物体的重力。
G. 物理教育学的历史及意义
人类在长期生产实践和科学实验中,不断地积累和发展着物理知识与技能,又不断地把它们传授给下一代。这种传授的内容与经验,经过科学的总结,并为新的实践和新的认识所修正和发展,使之在更符合社会需要、更科学的基础上进行传授,如此循环往复,逐步深入,这就是物理教育不断发展的过程。因此,物理教育史也是人类不断地认识和改革物理教育的历史。 研究物理教育史的根本任务,是揭示物理教育的客观规律,为物理教育实践提供理论指导。恩格斯说过:“世界不是一成不变的事物的集合体,而是过程的集合体。”物理教育的基本规律正是存在于物理教育发展运动的过程中。通过全面、系统地研究物理教育的发展过程,认真、科学地分析历次物理教育改革的背景、内容和影响,有助于探索社会的政治、经济、科技文化对物理教育的影响和物理教育对国家建设与社会发展的作用。事实上,物理教育的价值与功能,也只有在它与社会其他因素的相互作用中,才能比较全面、客观、准确地反映出来。这对正确认识物理教育在我国社会主义四个现代化建设中所肩负的历史任务,对国家制订物理教育的方针政策,从而摆正物理学科在学校教育中的地位,有重要的理论意义。
研究物理教育史,发现物理教育整个发展过程的基本线索和特点,客观地得出规律性的认识,这是物理教育进一步发展的重要前提,每一个物理教育工作者,了解和掌握物理教育的全过程,比较准确地把握新的物理教育生长点、突破口,预测物理教育、教学改革的方向和趋势,将有益于扩展视野和提高物理教育质量,有利于继承和借鉴前人的教学经验,这既包括从前人物理教学遗产中吸取其精华,也包括从前人的失误原因中吸取教训。历史上,许多教育家就是从对教育史的研究开始自己的创造活动的。了解历史上各个不同时期、不同自然科学水平上所产生的物理教育的指导思想、教学理论、教学内容和方法的积极作用与历史局限性,是今天进行物理教育、教学改革的基础。因此,在造就和培养合格物理教师的教育中,把熟悉物理学科的教育发展史作为对学生或学员的一项基本要求,是完全必要的。
在物理教育改革中,学习国外先进的教育观点、教学理论和教学方法固然十分重要,但它们在发展过程中所经历的道路和所处的情景,往往与我国是不同的。学习和研究中国物理教育史,可以了解我国历史上在向日本学习、向英美学习和向苏联等国学习中的经验教训。
H. 大学物理知识的学习对中学物理教学的意义
大学物理跟中学物理有相同的地方,也有很多不同之处。基本上来说,大学物理是中学物理的延伸。如果想教中学物理的话,大学物理应该是必看的内容,这会有助于你更好的理解物理学一些原理和本质的东西。以免在中学物理教学中造成原理上的错误。
大学物理的内容也比较简单,对于物理本专业的学者来说应该没有问题。只需稍花时间就可理解透彻。
I. 初中物理课堂教学评价的意义是什么
1、认真钻研教材,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。
2、了解学生原有的知识技能 ,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。 考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动,做到精心准备,认真备课。
3、在课堂上, 组织好课堂教学,关注全体学生,注意课堂教学信息反馈,调动学生的有意注意,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,注意引发学生学习的兴趣,向课堂45分钟要质量,提高各班成绩。
做好课后辅导和学生的学习指导工作,尤其在后进生的转化上,对后进生努力做到从友善开始,从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和那些欠努力和欠帮助的学生交谈时,对他的处境、想法表示深刻的理解和尊重,来转变他们的学习态度,提高学习成绩。
2009年9月-----2010年1月我将要迎接新课改的第二阶学生,刚接新课本,新学生
1、要认真学习新的《物理课程标准》,把新课程的基本理念渗透到教与学的全过程。要重视学生知识的建构和能力的培养;要重视学生的学习过程的展示和学习方法的提炼;要重视学生的学习情感的陶冶、学习态度和价值观的导向。要与新课程一同成长。
2、教学中要树立全新的学习观。学习要转向受教育者,突出学生学习的主体地位。即把活跃在教学舞台上的主动权交给学生,让学生真正成为学习的主角。教育的方式要由接受转向“学教”,即提倡学生的探索、求知在先,教师的指导、帮助在后,要给学生“悟”的时间与空间。教师的“教”应由学生的“学”来确定。要倡导自主学习、探究学习、合作学习和研究性学习。
3、教学中要树立全新的知识观。人的知识分显性知识和隐性知识。显性知识是教师灌输给学生的知识,它们是浅层次的知识,是比较易于遗忘的东西。隐性知识是学生发现学习得到的知识,如通过体验、顿悟、自省、直觉而得到的,极易保持的、带有一定感情色彩的东西。教师要摒弃以“量”为主的知识观,树立以知识的“质”和“结构”为主的观念,关注学生的隐性知识的摄取,注意渗透人文知识并努力使“教师”这一隐性课程知识美好地呈现给学生。
4、要树立全新的教学观。由教“学答”转变为教“思维”,注重学生的思维训练,注重创造性思维品质的培养。