Ⅰ 我是一名大二的学生,学的应用物理专业,有没有和计算机专业有关的考研方向,这是不是需要跨专业考研
一般来讲不需要跨专业。大二的学生,学的应用物理专业,考计算机科学与技术专业有优势;计算机科学与技术专业研究方向有计算机技术、计算机应用技术、计算机科学与技术和软件工程专业。其中计算机应用技术需要较高的物理基础。
目前中国计算机专业主要分为三大类:计算机基础专业、与理工科交叉的计算机专业、与文科艺术类交叉的计算机专业。
跨专业考研:跨越专业界限,让人生飞跃。
在专业选择上,考生往往会面临这样一个问题,就是选择本专业考研还是跨专业考研?很多考生都无法去冷静权衡这个问题,做出一个自己的选择。
尤其是挑战技巧难度都高出一筹的跨专业考研的同学,你们在下决心转弯于人生拐角的时候,希望你们能够了解,跨越专业,其实不仅是改变了学习方向,也是让人生能够有所突破与飞跃,开辟自己新的人生航道。 下面我们将具体谈谈跨专业考研。
Ⅱ 应用物理学考研什么方向最好
那你肯定就考你自己的专业课呀,你要是跨考的话考其他专业是比较难的,你要是从零开始学,时间压力还是很大的,最好就考你应用物理吧。就算你不喜欢,但是毕竟还是学了一点的。。。
一般来说可以考一下西北大学,还有中科大之要都是最好的。
Ⅲ 本科物理学考研可考哪些专业
本科物理学考研可考的专业有:光学工程、凝聚态物理、粒子物理与原子核物理、理论物理、理论物理等。
1、光学工程
光学工程(英语:optical engineering)是指把光学理论应用到实际应用的一类工程学。光学工程设计光学仪器,例如镜头、显微镜和望远镜,也包括其他利用光学性质的设备。此外,光学工程还研究光传感器及相关测量系统,激光、光纤通信和光盘(例如CD、DVD)等。
以上内容参考 网络-光学工程
以上内容参考 网络-凝聚态物理
以上内容参考 网络-粒子物理与原子核物理
以上内容参考 网络-理论物理
以上内容参考 网络-应用物理学
Ⅳ 物理学专业考研后一般什么就业方向比较好从事教学方面怎样
就业方向:
物理学就业与大多基础性专业相同,主要在高校、国防部门、科研机构等从事教学研究及相关科研管理工作。中国有很多与物理相关的研究所,如中国科学院高能物理研究所、理论物理研究所、近代物理研究所、等离子体物理研究所、国家空间科学中心等。
考研方向:
物理学毕业生主要的考研方向有理论物理、粒子物理与原子核物理、原子与分子物理、等离子体物理、凝聚态物理、声学、光学、无线电物理,以及与物理学相关的例如天体物理、化学物理、生物物理、大气物理海洋物理、地球物理等。
培养目标:
物理学专业本科人才培养目标,主要是为从事物理学及相关学科前沿问题研究和教学的专业人才打下基础,同时也培养能够将物理学应用于现代高新技术和社会各领域的复合应用型人才。经过物理学本科阶段的专业学习和训练,学生应具备在物理学及相关学科进一步深造的基础,或满足教学、科研、技术开发以及管理等方面工作的要求。
以上内容参考网络—物理学
Ⅳ 请问应用物理学考研各方向对应的就业方向是如何的,主要是进企业的那种
大学本科阶段的应用物理学专业其实是有各自的专业方向的。比如有往医学方面上应用的,还有光电信息和光电材料的专业方向。
既然打算考研当然优势是很大的,因为学物理的学生都有很强的数学物理基础。
很多专业课轻松的就能学会。当然要是考物理专业的研究生就要好好的准备一下了。总之还是爱好问题,学物理的能报考很多方面的研究生因为有很多课程你都学过,尤其是电子信息方面,光电,还有理论物理。
发展前景:
1、人才需求
应用物理学旨在培养能在大中型高新技术产业、公司、科研单位、高等院校从事科研、开发、教学和管理工作的高级应用型人才;具有向不同领域发展的潜力和素质,特别是在交叉学科的进一步深造方面具有优势的人才。
2、考研方向
应用物理学本科专业的学生,可报考物理学、理论物理、凝聚态物理、光学等硕士专业。
4、就业方向
应用物理学本科专业毕业人员从业方向包括事业单位人员、高中教师、公务员、软件工程师、初中教师、科研人员、硬件工程师、大学教师、通信技术工程师等岗位。
以上内容参考:网络-应用物理学
Ⅵ 本人是应用物理专业的本科生,想知道有哪些考研方向
物理专业考研方向
理论物理
主要研究方向
1、高温超导体机理、BEC理论及自旋电子学相关理论研究。
2、凝聚态理论;
3、原子分子物理、量子光学和量子信息理论;
4、统计物理和数学物理。
5、凝聚态物理理论、计算材料、纳米物理理论
6、自旋电子学,Kondo效应。
7、凝聚态理论、第一原理计算、材料物性的大规模量子模拟。
8、玻色-爱因斯坦凝聚, 分子磁体, 表面物理,量子混沌。
凝聚态物理
主要研究方向
1、非常规超导电性机理,混合态特性和磁通动力学。
(1)高温超导体输运性质,超导对称性和基态特性研究。
(2)超导体单电子隧道谱和Andreev反射研究。
(3)新型Mott绝缘体金属-绝缘基态相变和可能超导电性探索。
(4)超导体磁通动力学和涡旋态相图研究。
(5)新型超导体的合成方法、晶体结构和超导电性研究。
2、高温超导体电子态和异质结物理性质研究
(1)高温超导体和相关氧化物功能材料薄膜和异质结的生长的研究。
(2)铁电体极化场对高温超导体输运性质和超导电性的影响的研究。
(3)高温超导体和超大磁电阻材料异质结界面自旋极化电子隧道效应的研究。
(4)强关联电子体系远红外物性的研究。
3、新型超导材料和机制探索
(1)铜氧化合物超导机理的实验研究
(2)探索电子—激子相互作用超导体的可能性
(3)高温超导单晶的红外浮区法制备与物理性质研究
4、氧化物超导和新型功能薄膜的物理及应用研究
(1)超导/介电异质薄膜的制备及物性应用研究
(2)超导及氧化物薄膜生长和实时RHEED观察
(3)超导量子器件的研究和应用
(4)用于超导微波器件的大面积超导薄膜的研制
5、超导体微波电动力学性质,超导微波器件及应用。
6、原子尺度上表面纳米结构的形成机理及其输运性质
(1)表面生长的动力学理论;
(2)表面吸附小系统(生物分子,水和金属团簇)原子和电子结构的第一性原理计算;
(3)低维体系的电子结构和量子输运特性 (如自旋调控、新型量子尺寸效应等)。.
7、III-V族化合物半导体材料及其低维量子结构制备和新型器件探索
(1)宽禁带化合物(In/Ga/AlN,ZnMgO)半导体及其低维量子结构生长、物性、微结构以及相互关系的研究,宽禁带化合物半导体新型微电子、光电子器件探索;
(2)砷化镓基、磷化铟基新型低维异质结材料的设计、生长、物性研究及其新型微电子/光电子器件探索;
(3)SiGe/Si应变层异质结材料的制备及物性研究。
8、新颖能源和电子材料薄膜生长、物性和器件物理
(1)纳米太阳能转换材料制备和器件研制;
(2)纳米金刚石薄膜、碳氮纳米管/硼碳氮纳米管的CVD、PVD制备和场发射及发光性质研究;
(3)负电亲和势材料的探索与应用研究;
(4)纳米硅基发光材料的制备与物性研究;
(5)有序氧化物薄膜制备和催化性质。
9、低维纳米结构的控制生长与量子效应
(1)极低温强磁场双探针扫描隧道显微学和自旋极化扫描隧道显微学;
(2)半导体/金属量子点/线的外延生长和原子尺度控制;
(3)低维纳米结构的输运和量子效应;
(4)半导体自旋电子学和量子计算;
(5)生物、有机分子自组装现象、单分子化学反应和纳米催化。
10、生物分子界面、激发态及动力学过程的理论研究
(1)生物分子体系内部以及生物分子-固体界面(主要包括氧化物表面、模拟的细胞表面和离子通道结构)的相互作用的第一原理计算和经典分子动力学模拟;
(2)界面的几何结构、电子结构、输运性质及对生物特性的影响;
(3)纳米结构的低能激发态、光吸收谱、电子的激发、驰豫和输运过程的研究,电子-原子间的能量转换和耗散以及飞秒到皮秒时段的含时动力学过程的研究。
Ⅶ 应用物理学考研方向及其前景
新金属材料物理专业方向:培养从事金属及合金的物理、力学、化学性能及其理论研究,新型结构及功能材料探索和研制,金属材料的热处理及表面改性研究与开发等方面的专门人才。
应用物理学是中国普通高等学校本科专业,属物理学类专业,基本修业年限为四年,授予理学学士学位。
该专业以物理学为主要内容,了解物理的理论前沿、应用前景和最新发展动态以及相关高新技术的发展状况,掌握物理理论以及相关的工程技术知识,进行基础研究和应用技术方面的科学思维和科学实验训练。
在十九世纪末二十世纪初,随着物理学的不断发展,核技术的逐步崛起,此时应用物理作为一个领域从整体物理中被专门挑选出来,相对于更加注重结合数学的理论研究的物理专业而言,应用物理更注重理论在现实生活中的实际运用。
确立了应用物理的地位,表明了对应用物理态度的改变。是应用物理正式走向专业化的标志。在 20世纪以来应用物理在航空航天、电子电信、声、光等基础开发和应用中取得了巨大成就。
Ⅷ 我是学应用物理,有什么考研方向吗
大学本科阶段的应用物理学专业其实是有各自的专业方向的。比如有往医学方面上应用的,还有光电信息和光电材料的专业方向。
既然打算考研当然优势是很大的,因为学物理的学生都有很强的数学物理基础。
很多专业课轻松的就能学会。当然要是考物理专业的研究生就要好好的准备一下了。总之还是爱好问题,学物理的能报考很多方面的研究生因为有很多课程你都学过,尤其是电子信息方面,光电,还有理论物理。
(8)应用物理专业考研方向有哪些扩展阅读:
研究方向:
软物质,也称为复杂液体。
宏观量子态
介观
固体中的电子行为
就业去向:
高等院校、科研院所和高科技公司,做研究员、工程师、技术骨干等等。
物理学专业考研方向2:学科教学(物理)
学科教学(物理)(学科代码:045105)为专业硕士。专业硕士和学术学位处于同一层次,培养方向各有侧重。学科教学(物理)专业硕士主要面向经济社会产业部门专业需求,培养各行各业特定职业的专业人才,其目的重在知识、技术的应用能力。
Ⅸ 物理学专业考研都有哪些方向
一、物理专业的一般有以下几个方向可供选择:
理论物理学专业方向、 磁学与新型磁性材料专业方向、电子材料与器件工程专业方向、 新金属材料物理专业方向、 计算物理专业方向。
二、非物理专业、偏工科方向的研究生专业可供选择的有:
选择光学工程方向。其小方向有激光技术、光学精密测量、光电传感等。较好的学校有浙江大学、清华大学、天津大学等。
热动力工程或者能源工程方向,这方面现在是热门。西安交通大学,华中科技大学等。
量子通信方向,中国科学技术大学(安徽合肥)是全国领先的。这方面的技术可是国际热点,需要大量人才。
还有现在国家航天科技迅速发展,你也可以选择与航天有关的专业,比如北京航空航天大学。
物理学和计算机及网络联系还是比较紧密的,如果你对于计算机及网络技术感兴趣的话,可以跨专业考计算机方向。计算机专业现在实行全国联考。初试一般考四门专业课:数据结构、计算机组成原理、操作系统原理和计算机网络。研究生一般有两个大的研究方向:计算机软件与理论、计算机应用技术。每个大方向里面又有很多小研究方向。软件与理论主要是搞计算机系统结构、软件工程等,如果你喜欢搞理论和系统结构的话可以选择。计算机应用技术主要有计算机网络、单片机、嵌入式系统等。现在可以说是信息时代,计算机网络技术的应用前景相当广泛的。
计算机专业全国领先的学校是清华大学、国防科技大学、哈尔滨工业大学、南京大学、中国科学技术大学等。
如果你成绩一般,不是那么有信心的话,可以报考中等的院校,但最好是211工程的。如合肥工业大学等。在选择时,可以到学校网站查询一下其专业目录,最好选择是国家或省级重点的专业。这样会比较好一些。至于学校的招生,录取情况最好上网查询,并且多方打听一下才能下结论。工学的技术性较强,就业相对比较容易,而且比较容易对口。
研究生毕竟强调理论技术上的研究和创新。从就业的角度来讲,最好能学一些较为实用的技能,比如办公软件(文字处理、幻灯片、电子表格)、局域网组建等,这是几乎任何单位都可能遇到的问题。
Ⅹ 应用物理学跨专业考研,都能有哪些方向
物理专业考研方向
理论物理
主要研究方向
1、高温超导体机理、BEC理论及自旋电子学相关理论研究。
2、凝聚态理论;
3、原子分子物理、量子光学和量子信息理论;
4、统计物理和数学物理。
5、凝聚态物理理论、计算材料、纳米物理理论
6、自旋电子学,Kondo效应。
7、凝聚态理论、第一原理计算、材料物性的大规模量子模拟。
8、玻色-爱因斯坦凝聚, 分子磁体, 表面物理,量子混沌。
凝聚态物理
主要研究方向
1、非常规超导电性机理,混合态特性和磁通动力学。
(1)高温超导体输运性质,超导对称性和基态特性研究。
(2)超导体单电子隧道谱和Andreev反射研究。
(3)新型Mott绝缘体金属-绝缘基态相变和可能超导电性探索。
(4)超导体磁通动力学和涡旋态相图研究。
(5)新型超导体的合成方法、晶体结构和超导电性研究。
2、高温超导体电子态和异质结物理性质研究
(1)高温超导体和相关氧化物功能材料薄膜和异质结的生长的研究。
(2)铁电体极化场对高温超导体输运性质和超导电性的影响的研究。
(3)高温超导体和超大磁电阻材料异质结界面自旋极化电子隧道效应的研究。
(4)强关联电子体系远红外物性的研究。
3、新型超导材料和机制探索
(1)铜氧化合物超导机理的实验研究
(2)探索电子—激子相互作用超导体的可能性
(3)高温超导单晶的红外浮区法制备与物理性质研究
4、氧化物超导和新型功能薄膜的物理及应用研究
(1)超导/介电异质薄膜的制备及物性应用研究
(2)超导及氧化物薄膜生长和实时RHEED观察
(3)超导量子器件的研究和应用
(4)用于超导微波器件的大面积超导薄膜的研制
5、超导体微波电动力学性质,超导微波器件及应用。
6、原子尺度上表面纳米结构的形成机理及其输运性质
(1)表面生长的动力学理论;
(2)表面吸附小系统(生物分子,水和金属团簇)原子和电子结构的第一性原理计算;
(3)低维体系的电子结构和量子输运特性 (如自旋调控、新型量子尺寸效应等)。.
7、III-V族化合物半导体材料及其低维量子结构制备和新型器件探索
(1)宽禁带化合物(In/Ga/AlN,ZnMgO)半导体及其低维量子结构生长、物性、微结构以及相互关系的研究,宽禁带化合物半导体新型微电子、光电子器件探索;
(2)砷化镓基、磷化铟基新型低维异质结材料的设计、生长、物性研究及其新型微电子/光电子器件探索;
(3)SiGe/Si应变层异质结材料的制备及物性研究。
8、新颖能源和电子材料薄膜生长、物性和器件物理
(1)纳米太阳能转换材料制备和器件研制;
(2)纳米金刚石薄膜、碳氮纳米管/硼碳氮纳米管的CVD、PVD制备和场发射及发光性质研究;
(3)负电亲和势材料的探索与应用研究;
(4)纳米硅基发光材料的制备与物性研究;
(5)有序氧化物薄膜制备和催化性质。
9、低维纳米结构的控制生长与量子效应
(1)极低温强磁场双探针扫描隧道显微学和自旋极化扫描隧道显微学;
(2)半导体/金属量子点/线的外延生长和原子尺度控制;
(3)低维纳米结构的输运和量子效应;
(4)半导体自旋电子学和量子计算;
(5)生物、有机分子自组装现象、单分子化学反应和纳米催化。
10、生物分子界面、激发态及动力学过程的理论研究
(1)生物分子体系内部以及生物分子-固体界面(主要包括氧化物表面、模拟的细胞表面和离子通道结构)的相互作用的第一原理计算和经典分子动力学模拟;
(2)界面的几何结构、电子结构、输运性质及对生物特性的影响;
(3)纳米结构的低能激发态、光吸收谱、电子的激发、驰豫和输运过程的研究,电子-原子间的能量转换和耗散以及飞秒到皮秒时段的含时动力学过程的研究。
11、表面和界面物理
(1)表面原子结构、电子结构和表面振动;
(2)表面原子过程和界面形成过程;
(3)表面重构和相变;
(4)表面吸附和脱附;
(5)表面科学研究的新方法/技术探索。
12、自旋电子学;
13、磁性纳米结构研究;
14、新型稀土磁性功能材料的结构与物性研究;
15、磁性氧化物的结构与物性研究;
16、磁性物质中的超精细相互作用;
17、凝聚态物质中结构与动态的中子散射研究;
18、智能磁性材料和金属间化合物单晶的物性研究;
19、分子磁性研究;
20、磁性理论。
21、纳米材料和介观物理
研究内容:
发展纳米碳管及其它一维纳米材料阵列体系的制备方法;模板生长和可控生长机理研究;界面结构,谱学分析和物性研究;纳米电子学材料的设计、制备,纳米电子学基本单元器件物理。
22、无机材料的晶体结构,相变和结构-性能的关系
研究内容:
在材料相图相变研究的基础上,探索合成新型功能材料,为先进材料的合成和性能优化提供科学依据;在晶体结构测定的基础上,探讨材料结构-性能之间的内在联系,从晶体结构的微观角度阐明先进材料物理性质的机制,设计合成具有特定功能性结构单元的新型功能材料;发展和完善粉末衍射结构分析方法。
23、电子显微学理论与显微学方法
研究内容:
电子晶体学图像处理理论和方法研究,微小晶体、准晶体的结构测定;系统发展表面电子衍射及成像的理论和实验方法,弹性与非弹性动力学电子衍射的一般理论,高能电子衍射的张量理论,动力学电子衍射数据的求逆方法。
24、高分辨电子显微学在材料科学中的应用
研究内容:
利用高分辨、电子能量损失谱、电子全息等电子显微分析方法,研究金属/半导体纳米线的生长机制及结构与性能间的关系;复杂晶体结构中新型缺陷研究;结合其他物理方法,研究巨磁电阻、隧道结、半导体量子阱/点等薄膜材料的显微结构及其对物理性能的影响;低维材料界面势场的测量及与物理性能的相互关系;磁性材料中磁畴结构、各向异性场与波纹磁畴测定。
25、强关联系统微观结构,电子相分离和轨道有序化研究
研究内容:高温超导体的结构分析;强关联系统的电子条纹相和电子相分离研究;电荷有序化和JT效应;探索低温LORENTZ电子显微术,电子全息和EELS 在非常规电子态系统的应用。