‘壹’ 物理学前沿科技项目(6项)
1、寻找希格斯例子
2、蛋白质的立体结构
3、暗能量的问题
4、暗物质的问题
5、不同基本力是否课完全统一
6、物理学基本常数背后是否有特殊的原因
‘贰’ 当代物理学的前沿
天体物理,宇宙学,广义相对论,量子场论(量子电动力学、量子引力理论等),大统一、超大统一理论,量子信息,非平衡态物理学(如非平衡态热力学),非线性物理学(如非线性力学、非线性电磁场理论等),分形物理学,现代光学,粒子物理学(高能物理学)等。
‘叁’ 20世纪物理学的主要成就有哪些列举取得这些成就的主要的物理学家
20世纪物理学发展的历史回顾
http://www.nen.com.cn 2003-06-30 22:08:11 中小学教师网
记 者:可以想象一下,今天何院士的谈话面对的是全国1000万中小学教师,网络课堂的魅力正在于此。我们要谈的是21世纪的物理前沿,而20世纪才刚刚过去,所以其实物理更多的是在继续着20世纪的精彩。而说到20世纪的物理学,自然而然会想到当时发生的重大事件是如何驱散物理学天空的两朵乌云的,我们就从这里谈起吧。
何祚庥:在19世纪末叶,有一个叫开尔文的物理学家,他当时有一个很有名的话,就是“19世纪的物理学,已经把所有的问题都解决了,好像是一片晴朗的天空,但是在晴朗的天空上还有两朵乌云”。这两朵乌云指什么呢,一个是指当时对以太的存在性,光速跟以太有没有关系的疑问;另外一个是关于黑体辐射的,谱形没有得到很好的解释。这两个理论问题都没有很好的解决,所以说在晴朗的天空上还留有两朵乌云。
这是19世纪物理学家说的话,没有想到这就成为了20世纪物理学发展的序幕。第一朵乌云的驱散,导致了狭义相对论的诞生,另外一朵乌云的澄清。导致了量子力学诞生。这两朵乌云一澄清以后,物理学就有飞速发展。我可以简要叙述一下狭义相对论的特点。狭义相对论之所以提出来,是针对光速测量产生的。当时有好多实验,有的证明了以太是静止不动的,还有的证明了以太是随着物质的运动而运动的,也有一些证明是以太是随着物质的运动而部分地带运动的。所以这个以太就成为了一个“谜”。爱因斯坦就深入分析了这个问题,从一个科学实验事实出发,实验说光的速度和发光物质的运动状态无关,也就是说光不论在什么地方发射,光源的速度是多少,观察者,包括运动中的观察者,永远看到的是光的速度,大概是每秒30万公里在运行。根据这样一个奇怪的事情,再加上了空间是均匀的,各向同性的假定,爱因斯坦就提出了狭义相对论,这是人们对事件空间的观念的一个转变。在狭义相对论中发现,牛顿力学需要有修正。牛顿力学中的力等于动量对时间的微分,其中动量就是质量乘以速度,而相对论就是对这个动量作了修正,结果就是就是物体在低速运动的时候仍然符合牛顿力学的规律,而在速度很大,接近光速的时候,运动规律就有很大的修改。同时爱因斯坦的相对论还有一些很特殊性质的发现,比如钟慢尺缩。
20世纪另外一个重大的发现是量子力学,量子力学的发现是由于黑体辐射问题很难得到一个统一的解决而产生出的问题。这一件事情,当时有一个大物理学家叫做普朗克,他在1900年12月14日发表了一篇很重要的文章来解释黑体辐射。普朗克引进了一个假说,也就是光的能量的传播,不是连续的释放和吸收,而是以一个一个光量子的形态来出现,这个光量子形态也就是普朗克常数乘以光的频率。这个假说很好的解释了黑体辐射问题。这是物理学中第一次引进了光能的吸收和释放是不连续的概念。爱因斯坦进一步用普朗克假说解释了光电效应,进一步爱因斯坦又提出光子除了具有能量之外,还具有动量,这个动量就是普朗克常数h乘以振动频率再除以光速c。光子就不再简单看作电磁波的振动,也看作是粒子,这个粒子既有能量又有动量。后来康普顿和吴有训先生在实验上证明了这样一个光子打到电子以后,光子运动的频率和运动方向都会发生改变,而这样一个改变的后果就象是光子作为一个具有确定动量的小球,打在一个静止的电子上面,然后光子再通过弹性散射到另外一个方位上去,这样的改变完全遵守牛顿力学中的弹性碰撞定律,这样就让人们看得很清楚,就是光子既是波,又是粒子,这就是波粒二象性。进一步,法国人德布洛意提出波粒二象性不仅是光子具有的,而是任何一种粒子都具有的。也就是光子看起来是波,其实也是粒子;而普通称为粒子的电子,中子,质子,甚至分子,原子,这些看起来是粒子的也有波动性,因此他把光子的波粒二象性扩展成粒子的波粒二象性。这就是德布洛意波假说。进一步,到了薛定鄂、海森堡就把德布洛意的观念更加普遍化,变成量子力学。量子力学出来以后,引起了人们对微观世界认识的一场大革命。
我觉得这两件事情就是20世纪物理的重大发现.
记 者:20世纪三大发现中,这两大发现都是物理学的。
何祚庥:是的。我可以这样来评价一下物理学的大发现。物理学的大发现,在历史上有三次。第一次是牛顿力学。牛顿力学以及当时跟牛顿力学有关系的科学所发现的物理学定律是宏观的低速运动的规律。因为牛顿力学讨论象地球,太阳,月球这些天体运动,即讨论对象的运动速度是慢的,物体是宏观的。
记 者:所以说牛顿力学勾画的是经典物理学的图景。
何祚庥:对。到后来,人们研究了电磁相互作用的定律。电磁相互作用定律的一个重要特点就是以光速而运动。电磁波的运动可以说是一种宏观而高速的运动。到了爱因斯坦的相对论,就把宏观低速运动和高速运动有机的联系在一起,其中,描写光的高速运动的麦克斯韦方程却自然而然的满足狭义相对论。这就是物理学的第二次突破,爱因斯坦,包括他的前人麦克斯韦就发现了宏观高速运动的规律。第三次突破是量子力学。量子力学回答的是微观粒子的运动规律,而薛定鄂,海森堡的量子力学是涉及微观低速作用下的规律。这三次突破都引起了生产技术的重大变革。牛顿力学奠定的是机械工程等方面的基础,麦克斯韦方程,狭义相对论是我们现代电气化的支撑,至于第三次大突破的量子力学的出现,就涉及化学运动的规律,半导体的规律,原子核运动的规律等。我们现在面临的原子能时代,电脑时代的技术,都是量子力学的贡献。物理学每一次划时代的发现都带来了划时代技术的进展。
20世纪物理学最重要的成就就是我以上说的这些。
‘肆’ 物理学上有代表性的重大发现,数量控制在20个左右
1、1906年,约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献。
2、1907年,A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究
3、1911年,W.维恩(德国人)发现热辐射定律。
4、1917年,C.G.巴克拉(英国人)发现元素的次级X 辐射的特征。
5、1921年,阿尔伯特·爱因斯坦(美籍犹太人)发现了光电效应定律等。
6、1924年,K.M.G.西格巴恩(瑞典人)发现了X 射线中的光谱线。
7、1929年,路易斯·维克多·德布罗意(法国人)发现物质波。
8、1929年 派尔斯提出禁带、空穴的概念,同年贝特提出了费米面的概念。
9、1932年,维尔纳·K.海森伯(德国人)创建了量子力学。
10、1935年,J乍得威克发现中子。
11、1936年,V.F.赫斯(奥地利人)发现宇宙射线。
12、1937年,C.J.戴维森(美国人)、G.P.汤姆森(英国人)发现晶体对电子的衍射现象。
13、1945年,沃尔夫冈·E.泡利(奥地利人)发现不相容原理。
14、1947年贝尔实验室的巴丁、布拉顿和肖克莱发明了晶体管,标志着信息时代的开始。
15、1953年,F.泽尔尼克(荷兰人)发明了相衬显微镜。
16、1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子。
17、1958年,P.A.切伦科夫、I.E.塔姆、I.M.弗兰克(俄国人)发现并解释了切伦科夫效应。
18、1958年杰克.基尔比发明了集成电路。
19、1959年,E .G. 塞格雷、O.张伯伦(美国人)发现反质子。
20、1960年,D.A.格拉塞(美国人)发明气泡室,取代了威尔逊的云雾室。
‘伍’ 物理学界2019年最新研究成果
量子控制方面的最新发现,将可能会实现基于量子力学的超快量子计算:光诱导无能隙超导,超导电流的量子节拍。太赫兹和纳米尺度的物质和能量的量子世界(每秒几万亿次周期和十亿分之一米),对我们大多数人来说仍然是一个谜。爱荷华州立大学物理学和天文学教授王继刚(音译)说:我喜欢研究超导率超过千兆赫(每秒数十亿次)的量子控制,这是目前最先进的量子计算应用瓶颈。
使用太赫兹光作为控制旋钮来加速超电流,超导性是电在某些材料中无电阻的运动,通常发生在非常非常冷的温度下。太赫兹光是高频率光,每秒几万亿次的频率周期,它本质上是非常强和强大的微波爆发,在很短的时间内发射。王和一组研究人员证明,这种光可以用来控制超导态的一些基本量子特性。
包括宏观超电流流动、对称性破坏以及获得某些被认为是对称性所禁止的超高频量子振荡。这听起来既深奥又奇怪,但它可以有非常实际的应用。光诱导的超导电流为电磁设计量子工程应用的涌现,材料特性和集体相干振荡开辟了一条前进的道路,其研究于2019年7月1日发表在《自然光子学》(Nature Photonics)上。换句话说,这一发现可以帮助物理学家通过推动超电流,创造出速度极快的量子计算机。
如何控制、访问和操纵量子世界的特殊特性,并将它们与现实世界的问题联系起来,是当今科学界的一大推动。美国国家科学基金会(National Science Foundation)将这一“量子飞跃”纳入了未来研发的“十大理念”。科学基金会对量子研究的支持总结说:通过利用这些量子系统的相互作用,下一代用于传感、计算、建模和通信的技术将更加精确和高效。
‘陆’ 爱因斯坦之后,物理学有哪些重大发现
爱因斯坦是物理学史上一位具有划时代意义的伟大科学家。他的狭义相对论给人类带来了对时间、空间等概念的全新认识;广义相对论将引力几何化,推动着天文学进入一个新时期。爱因斯坦还是量子力学的奠基人之一,用光量子解释了光电效应使他获得了诺贝尔物理学奖。上世纪二十年代起,爱因斯坦就坐稳了物理学领袖的位置,尽管在他四十多岁后就没再做出重大科学发现。
60年代时,天文学领域也取得了一个又一个的重大发现,类星体、脉冲星、宇宙微波背景辐射、星际有机分子就是在这期间被发现的。这些发现为人类认识宇宙、为推动天文学、宇宙学的发展起到了极大的促进作用。
另外,超导体的理论研究、黑洞的发现、量子霍尔效应的发现、中微子振荡的发现、引力波的发现都是物理学史、人类文明史上具有里程碑意义的事件。今天,物理学依然有很多重大问题有待进一步解决。
‘柒’ 近几年物理学前沿取得的成就及研究成果
2000~2009年度诺贝尔奖获奖名录
2000年12月10日第一百届诺贝尔奖颁发。
俄罗斯科学家阿尔费罗夫、美国科学家基尔比、克雷默因奠定了资讯技术的基础,而共同获得诺贝尔物理奖。
美国科学家黑格、麦克迪尔米德、日本科学家白川秀树因发现能够导电的塑料,而共同获得诺贝尔化学奖。
瑞典科学家阿尔维德·卡尔松、美国科学家保罗·格林加德、奥地利科学家埃里克·坎德尔因在人类脑神经细胞间信号的相互传递方面获得的重要发现,而共同获得诺贝尔医学及生理学奖。
詹姆斯· 赫克曼丹尼尔·麦克法登因发展了能广泛应用于个体和家庭行为实证分析的理论和方法,而共同获得诺贝尔经济学奖。
2001年12月10日第一百零一届诺贝尔奖颁发。
德国科学家克特勒、美国科学家康奈尔、维曼因在碱性原子稀薄气体的玻色-爱因斯坦凝聚态,以及凝聚态物质性质早期基础性研究方面取得的成就,而共同获得诺贝尔物理学奖。
美国科学家威廉·诺尔斯、巴里·夏普莱斯、日本科学家野依良治因在“手性催化氢化反应”领域取得的成就,而共同获得诺贝尔化学奖。
美国科学家利兰·哈特韦尔、英国科学家蒂莫西·亨特、保罗·纳斯因发现了细胞周期的关键分子调节机制,而共同获得诺贝尔生理学及医学奖。
2002年12月10日第一百零二届诺贝尔奖颁发。
美国科学家里卡尔多·贾科尼、雷蒙德·戴维斯、日本科学家小柴昌俊因在探测宇宙中微子方面取得的成就,并导致中微子天文学的诞生,而共同获得诺贝尔物理学奖。
美国科学家约翰·芬恩、日本科学家田中耕一、瑞士科学家库尔特·维特里希因发明了对生物大分子进行确认和结构分析、质谱分析的方法,而共同获得诺贝尔化学奖。
英国科学家悉尼·布雷内、约翰·苏尔斯顿、美国科学家罗伯特·霍维茨因选择线虫作为新颖的实验生物模型,找到了对细胞每一个分裂和分化过程进行跟踪的细胞图谱,而共同获得诺贝尔医学及生理学奖。
2003年12月10日第一百零三届诺贝尔奖颁发。
俄罗斯科学家阿列克谢·阿布里科索夫、维塔利·金茨堡、英国科学家安东尼·莱格特因在超导体和超流体理论上作出的开创性贡献,而共同获得诺贝尔物理学奖。
美国科学家彼得·阿格雷、罗德里克·麦金农因在细胞膜通道方面做出的开创性贡献,而共同获得诺贝尔化学奖。
美国科学家保罗·劳特布尔、英国科学家彼得·曼斯菲尔德因在核磁共振成像技术领域的突破性成就,而共同获得诺贝尔生理学及医学奖。
2004年12月10日第一百零四届诺贝尔奖颁发。
三位美国科学家戴维·格罗斯、戴维·波利泽和弗兰克·维尔泽克因在夸克粒子理论方面所取得的成就共同获得诺贝尔物理学奖。
以色列科学家阿龙-西查诺瓦、阿弗拉姆-赫尔什科和美国科学家伊尔温-罗斯因在蛋白质控制系统方面的重大发现而共同获得诺贝尔化学奖。
美国科学家理乍得-阿克塞尔和琳达-巴克两人在气味受体和嗅觉系统组织方式研究中作出的贡献而共同获得诺贝尔生理学及医学奖。
奥地利女作家艾尔芙蕾德-耶利内克(Elfriede Jelinek)因"她小说和剧本中表现出的音乐动感,和她用超凡的语言显示了社会的荒谬以及它们使人屈服的奇异力量"获得诺贝尔文学奖
肯尼亚环保主义者马塔伊因在可持续发展方面的贡献获诺贝尔和平奖。
挪威经济学家基德兰德(Finn Kydland)和美国经济学家普雷斯科特(Edward Prescott)由于揭示了经济政策和世界商业循环后驱动力的一致性而共同获得2004年诺贝尔经济学奖,这是美国经济学家连续第5次获得诺贝尔经济学奖。
2005年12月10日第一百零五届诺贝尔奖颁发。
美国科学家奥伊-格拉布尔(Roy J. Glauber) 、约翰-哈尔(John L. Hall )和德国科学家特奥多尔-汉什(Theodor W. H�0�1nsch)共同获得本年度的诺贝尔物理奖。奥伊-格拉布尔是因光学相关量子理论方面所取得的成就获奖的;约翰-哈尔和汉什则是因包括光频滤波技术在内的激光精确波谱检查方面所取得的成就获奖的。
法国科学家是伊夫·肖万(Yves Chauvin) 、美国科学家罗伯特·格拉布(Robert H. Grubbs)、美国科学家里理乍得·施罗克(Richard R. Schrock)共同获得本年度的诺贝尔化学奖。他们是因在有机化学的烯烃复分解反应研究方面作出了贡献而获奖的。这一方法是研究碳原子之间的化学联系是如何建立和分解的,是一种产生化学反应的关键方法。
澳大利亚科学家巴里·马歇尔和罗宾·沃伦,以表彰他们发现了导致胃炎和胃溃疡的细菌———幽门螺杆菌获得本年度的诺贝尔生理学或医学奖。马歇尔和沃伦将分享130万美元的奖金。
国际原子能机构/IAEA及其总干事巴拉迪因防止核能被用于军事目的并确保最安全地和平利用核能而共享本年度诺贝尔和平奖这一荣誉。
以色列和美国双重国籍的罗伯特·奥曼和美国人托马斯·谢林获得本年度的度诺贝尔经济奖,以表彰他们通过博弈理论的分析增强世人对合作与冲突的理解。
2006年12月10日第一百零六届诺贝尔奖颁发。
2007年12月10日第一百零七届诺贝尔奖颁发。
2008年12月10日第一百零八届诺贝尔奖颁发。
2009年12月10日第一百零九届诺贝尔奖颁发。
‘捌’ 近年来(15 16 17年)物理学上的最大发现 成就等。最好有详细介绍 🙏
2015年2月26日,国际顶级科学期刊《自然》(Nature)以封面标题的形式发表了潘建伟、陆朝阳等人的文章《单个光子的多个自由度的量子隐形传态》(Quantum teleportation of multiple degrees of freedom of a single photon)。
简而言之,这项工作的新成果在于“多个自由度”,因为以前已经实现了单个自由度的量子隐形传态。
什么是量子?一个量如果存在最小的不可分割的基本单位,就像上台阶一样,只能上一个一个的台阶而不能上半个台阶,我们就说这个量是量子化的,把这个最小单位称为量子。我们日常所见的宏观世界似乎一切都是无限可分的,微观世界里却有很多物理量是量子化的,例如原子中电子的能量。所以准确描述微观世界的理论必然是量子化的,这种理论就是量子力学。宏观物质是由微观粒子组成的,所以对宏观世界的准确描述也必须是量子力学。中学里学的牛顿力学只是对宏观世界的近似描述,在作为量子力学对立面的意义上被称为经典力学。
什么是量子隐形传态?这是一种在1993年提出的方案,把粒子A的未知的量子态传输给远处的另一个粒子B,让B粒子的状态变成A粒子最初的状态。注意传的是状态而不是粒子,A、B的空间位置都没有变化,并不是把A粒子传到远处。当B获得这个状态时,A的状态必然改变,任何时刻都只能有一个粒子处于目标状态,所以并不能复制状态,或者说这是一种破坏性的复制。在宏观世界复制一本书或一个电脑文件是很容易的,在量子力学中却不能复制一个粒子的未知状态,这是量子与经典的一个本质区别。很多人听说量子力学中状态的变化是瞬时的,无论两个粒子相距多远,于是认为隐形传态的速度可以超过光速,推翻相对论。错了。隐形传态的方案中有一步是把一个重要的信息(可以理解为一个密钥)从A处传到B处,利用这个信息才能把B粒子的状态变成目标状态。这个信息需要用经典信道(例如打电话、发邮件)传送,速度不能超过光速,所以整个隐形传态的速度也不能超过光速。很多人把隐形传态当成科幻电影中的传送术,瞬间把人传到任意远处,然后还担心复制人和本尊的伦理问题,其实这些理解都是错误的。量子隐形传态是以不高于光速的速度、破坏性地把一个粒子的未知状态传输给另一个粒子。打个比方,用颜色表示状态,A粒子最初是红色的,通过隐形传态,我们可以让远处的B粒子变成红色,而A粒子同时变成了绿色。但是我们完全不需要知道A最初是什么颜色,无论A是什么颜色,这套方法都可以保证B变成A最初的颜色,同时A的颜色改变。
量子隐形传态是在什么时候实现的?是1997年,当时潘建伟在奥地利维也纳大学的塞林格(Zeilinger)教授组里读博士,他们在《自然》上发表了一篇题为《实验量子隐形传态》(“Experimental quantum teleportation”)的文章,潘建伟是第二作者。这篇文章后来入选了《自然》杂志的“百年物理学21篇经典论文”,跟它并列的论文包括伦琴发现X射线、爱因斯坦建立相对论、沃森和克里克发现DNA双螺旋结构等等。
什么是自由度?自由度就是描述一个体系所需的变量的数目。例如一个静止在一条线上的粒子,描述它只需要一个数,自由度就是1。静止在一个面上的粒子,自由度就是2。三维空间中的静止粒子,自由度就是3。描述三维空间中一个运动的粒子,需要知道位置的3个分量和动量的3个分量,自由度是6。光子具有自旋角动量和轨道角动量,如果你看不懂这两个词,没关系,只要明白它们是两个自由度就够了。在1997年的实验中,传的只是自旋。此后各种体系的各种自由度都被传输过,但每次实验都只能传输一个自由度。
传输一个自由度固然很厉害,但是只具有演示价值。隐形传态要实用,就必须传输多个自由度。这在理论上是完全可以实现的。打个比方,现在用颜色和形状来表示状态,A粒子最初是红色的正方体,我们可以让B粒子变成红色的正方体,同时A变成绿色的球体。这个扩展看似显而易见,但跟传输一个自由度相比,有极大的困难。隐形传态实验一般需要一个传输的“量子通道”,这个通道是由多个粒子组成的,这些粒子纠缠在一起,使得一个粒子状态的改变立刻就会造成其他粒子状态的改变。用物理学术语说,这些粒子处于“纠缠态”。制备多粒子的纠缠态已经是一个很困难的任务了,而要传输多个自由度,就需要制备多粒子的多个自由度的“超纠缠态”,更加令人望而生畏。潘建伟研究组就是攻破了这个难关,搭建了6光子的自旋-轨道角动量纠缠实验平台,才实现了自旋和轨道角动量的同时传输。
用《道德经》的话说:“道生一,一生二,二生三,三生万物。”1997年实现了道生一,那时潘建伟还是博士生。2015年实现了一生二,这时他已经是量子信息的国际领导者。从传输一个自由度到传输两个自由度,走了18年之久,这中间有无数的奇思妙想、艰苦奋斗,是人类智慧与精神的伟大赞歌。
下面我们来看其余九大突破。再次强调,排名不分先后,九名并列亚军。每一项工作都是科学家们的卓越成就,值得我们热烈鼓掌。基本内容是我对上引欧洲物理学会新闻的翻译,有些地方加上我的注释。
首次测量到单电子的同步辐射。奖给8号项目(Project 8)协作组(注释:8号项目的两位发言人来自美国的麻省理工大学和加州大学圣塔芭芭拉分校),他们测量到氪-83的β衰变中发射出的单个电子的同步辐射。辐射是在电子通过磁场时发出的,使得团队可以对粒子被发射时的能量作出非常精确的测量。8号项目正在努力提高测量精度,以用于计算物理学中最难以捉摸的量之一——电子型反中微子的质量,这些电子型反中微子也是在β衰变中发射出的。注释:根据相对论,能量等于质量乘以光速的平方。因此如果精确地知道一个核反应前后那些能观测到的粒子的能量,两者相减就得到那些观测不到的粒子(在这里是电子型反中微子)带走的能量,也就知道了这些粒子的质量。因为中微子的质量非常微小,接近于零,所以这个实验需要极高的精度,才能得出有意义的结果。
终于发现了外尔费米子。奖给普林斯顿大学的Zahid Hasan、麻省理工大学的Marin Soljačić以及中国科学院(注释:物理研究所)的方忠与翁红明,为他们关于外尔费米子的先驱性工作。这些无质量的粒子是德国数学家赫尔曼·外尔(Hermann Weyl)在1929年预言的。Hasan和方忠、翁红明领导的团队各自独立地在准金属砷化钽(TaAs)中发现了一种准粒子的指示性证据,这种准粒子表现得就像外尔费米子。Soljačić和同事们在一种非常不同的材料中发现了存在外尔玻色子的证据,——一种“双gyroid”(注释:gyroid是一种无穷连接的三重周期性最小面,参见https://en.wikipedia.org/wiki/Gyroid)的光子晶体。外尔费米子的无质量特性意味着它们可能被用于高速电子学,此外由于它们面对散射时受到拓扑保护,对量子计算机可能也有用处。注释:对外尔费米子的一个介绍,可以见中科院物理所戴希研究员的博客《外尔半金属的故事》,他和方忠用理论计算预测了在TaAs中发现外尔费米子的可能性。现在发现的外尔费米子不是真实的粒子,而是一种真实粒子的集体运动模式,即准粒子,这是凝聚态物理中特有的现象。外尔最初是在粒子物理领域预言这种粒子的,寻找它花了86年,最终却是在凝聚态物理领域找到了这种粒子。在凝聚态物理中实现粒子物理的理论,是当代物理学一种普遍而有趣的思路。
2016年物理学将会发生一些重大的科学事件,其中粒子物理学、天文学和宇宙学似乎提前规划好了。来自欧洲核子研究中心总干事法比奥拉的观点,明年大型强子对撞机会继续在13 TeV能量上对撞质子,预计会有一个新的发现,是后上帝粒子时代的产物。但是强子对撞机可能还无法达到14TeV能量,科学家正在不断进行尝试,欧洲核子研究中心的ATLAS和CMS实验已经暗示超对称粒子存在的可能性,它们位于更高对撞能量中。2016年科学领域取得了许多令人瞩目的成就,包括有“时空涟漪”之称的引力波被发现、可以发射有效载荷至轨道并安全返回的火箭等。但2017年更令人充满期待,人类有望找到“信息宝库”,包括卡西尼号探测器通过土星大气层、新的物理学粒子被发现、预防痴呆症的更好方式等。与此同时,2017年也有许多令科学家们感到害怕的前景。
2017年科学展望
1.利物浦大学物理学教授塔拉·希尔斯(Tara Shears)
2016年,欧洲大型强子对撞机完成技术升级并重新启动,相比以前拥有了更加强大的能级和强度,获得了海量高能数据。我期盼着强子对撞机的粒子对撞数据中出现新的发现,那必定是非常有趣的。通过对这些数据进行分析,你觉得宇宙正慢慢成为焦点,你很快就能看到更多粒子被发现。
2.伦敦大学学院精神病学讲师克劳迪亚·库珀(Claudia Cooper)
随着我们越来越多地发现可增加老年痴呆症危险的因素,较少正规教育、不良饮食、糖尿病、缺少活动、听力损失等,我们有可能延缓甚至预防老年痴呆症。在精神上、社交方面以及心理上帮助人们保持活跃,吃更健康的饮食和好好照顾自己的身体,都可以减缓认知衰退的速度。2017年,相关研究有望取得更多发现,以支持人们抵抗痴呆症的侵袭。
3.朴茨茅斯大学天文学和天体物理学讲师凯伦·马斯特斯(Karen Masters)
我非常期待下一轮引力波试验的结果。2016年人类首次直接探测到引力波,这让我感到非常激动,我甚至因此专门买下带有引力波图案的裙子以示庆祝。首次发现引力波不仅证明了引力理论的正确性,同时也是对那些建造惊人探测器的人的巨大鼓舞。更重要的是,作为天文学家,我发现物体探测非常迷人。黑洞碰撞的质量令人感到惊讶,它竟然能够发出如此清晰的信号,并且在试验初期就被发现。是幸运,亦或是这种信号普遍存在?我很激动,希望2017年能够看到宇宙中更多的黑洞碰撞事件,我们将利用这些新的方式来了解宇宙。
‘玖’ 量子力学诡异在哪靠它诞生的尖端科学成果有哪些
量子力学就诡异在它是微观世界中种种规律的一门学科。靠量子力学诞生的各种尖端科学成果,比如说量子加密,量子通讯,量子飞船。我们都知道,二十一世纪,人类在科学的各个领域都已经取得了充足的进步和突破,但是,我们对宇宙的探索,科学的扩展,仍然没有找到尽头。
时至今日,量子力学,已经成了前沿物理学最不可或缺的学科之一。但是,上世纪着名物理学家费曼,曾经对量子论有一个着名的论断,“没人能够真正了解量子力学”。
包括人类日常生活中离不开的手机,电脑,都有赖于量子力学的进步。总而言之,量子论的重要性,是毋庸置疑的。未来,等到人们真正的掌握了量子力学之后,也会因此打开新科技时代的大门。
‘拾’ 有哪些最新的物理研究成果
测量与地球物理研究所(简称测地所)坐落在美丽的东湖之滨,是中国科学院知识创新工程试点单位,主要从事大地测量学、地球物理学与环境科学的基础研究,是中科院唯一从事大地测量学研究的研究所。主要研究方向:地壳局部和整体运动、地球内部结构及圈层的相互作用、大地测量在国防和工程建设中的应用研究,长江中游环境灾害的监测与研究,湿地演化与生态修复以及区域可持续发展研究等。其研究成果在我国国防和国民经济建设及环境变化、减灾防灾等领域发挥着重要作用。在国内地学界以学科精干、方向明确独树一帜,在国际大地测量学研究领域中占据一席之地。许厚泽院士曾任两届国际地潮委员会主席,两届国际重力委员会副主席等职务。
测地所是国务院批准的首批博士和硕士学位授予单位之一。拥有"测绘科学与技术"博士后流动站,固体地球物理学和大地测量学两个博士学位授予点,固体地球物理学、大地测量学和自然地理学三个硕士学位授予点。
测地所拥有一支以中青年为骨干的创新队伍,其中中国科学院院士1人,高级研究人员44人。高级专业技术职务人员中60%是45岁以下的青年科技骨干,一批年轻的博士已成为该所优势学科领域和重要科研项目的中坚力量,并形成了以他们为主体的具有较高研究水平的青年博士群体,拥有经验丰富的教师队伍。进入知识创新工程试点以来,我所有三篇论文获全国百篇优秀博士论文奖;2000年、2001年、2002年连续三年获中国科学院院长奖学金特别奖(全院每年不超过20名); 2001、2002、2003年连续三届在国际导航技术大会(ION GPS)上获研究生优秀论文奖,2004年有一篇论文获中科院首届优秀博士论文奖。
在学研究生除享受助学金外,同时实施“研究助理”制度和“奖学金”制度。博士生助学金和津贴合计最高可达1300元/月,硕士生最高可达950元/月。优秀研究生可申请奖学金,博士6000元/年,硕士3500元/年。
2006年测地所继续接受部分优秀应届本科毕业生免试为硕士生。
我也不知道这是不是你要的那些