1. 中国物理学的发展前景如何
物理学使“衰老”变得不可避免
4年前,在我出版《生命的棘轮》一书时,我关注的重点是,在周围的分子一片混乱的情况下,生命是如何创造并维持那些高度有序的系统的——也就是分子是如何被安装上“棘轮”、“从混乱中提取秩序”的。令我感到惊讶的是,这本书在衰老研究领域引起了极大的反响。美国国家衰老研究所心血管科学实验室的主要负责人埃德·拉科塔说,衰老是从“秩序中提取混乱”。最近,我应邀为“鹦鹉螺”网站专门撰写了文章,谈到了这些观点,也收到了数量相当可观的评论,比如:①我们是开放的热力学系统,因此不会遵循熵不断增加的规律(因为我们总是可以从环境中获得更多的低熵能量);②我们的细胞有一个修复系统,可以处理可能发生的任何损害;③现实中就存在“永生的”细胞和生物体,与我宣称的“衰老不可避免”相互抵触。那么,这些评论究竟有没有道理呢?
当水母的精子和卵子结合到一起时,形成了小小的实囊幼体。但是,幼体并不走寻常路,快乐地长大,而是通常找个坚硬的石头之类一头撞上去,撞出软体的分支结构,即水螅体。绝大多数时候,这些幼体自身分裂出微小的克隆体——就像水螅一样出芽生殖,但有些种属也特立独行。它们分离出能自由游弋的小型雄性或雌性水母,再长成成体,然后产生精子或卵子。总之就是怎么高兴怎么来,任性得一塌糊涂。大多数水母可以在这个复杂的生命周期的大部分阶段逆转其生长态势,但一旦它们长成性成熟的成体,就失去了这种倒转干坤的技能。灯塔水母违背了根本的规则,特别是,即使性成熟的成体也可以反转为未发育成熟的幼体,这样它们就躲过了生死簿,实现了可能的永生。这就像一只蝴蝶突然厌倦了飞翔,又钻回虫蛹。正如多数生物学不死机体的案例,灯塔水母的这个技能也是一个谜。看起来它们在蜕变中细胞涉及了一次异乎寻常的逆转。水母与其他动物没有多少共同点,这也是它们无性繁殖的方式。它们的永生,在我们眼里如此奇特。转载请注明来源。
2. 纳米技术有什么作用
纳米技术的本质作用就是直接以原子或分子来构造具有特定功能的产品。即通过纳米精度的"加工"来人工形成纳米大小的结构。
纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农产品等方面。
用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。
衍生产品举例:
1、纳米机器人
根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”,也称分子机器人;而纳米机器人的研发已成为当今科技的前沿热点。
许多国家纷纷制定相关战略或者计划,投入巨资抢占纳米机器人这种新科技的战略高地。《机器人时代》月刊指出:纳米机器人潜在用途十分广泛,其中特别重要的就是应用于医疗和军事领域。
2、雨衣伞
纳米雨衣伞是雨伞与雨衣的结合体,纳米雨伞收伞有三折伞和直杆伞的收伞形态(简单说,收伞时有长短两种选择)。纳米雨衣可由纳米雨伞转变而成,纳米雨衣又不同于一般的雨衣,因为纳米雨衣可以保证从头到脚绝对不湿。
3、防水材料
2014年8月4日,澳大利亚运用新发明的布料,制成一款具有开创性的T恤衫,不管人们怎样尝试着浸湿它,此T恤都能保持良好的防水性能。
这件叫做“骑士”(The Cavalier)的白色T恤是百分之百棉质的。其布料运用“疏水”纳米技术应用编织而成,能够有效防止大部分液体和污渍的浸入。这种T恤可以用机器清洗,其防水功能最多可承受80次清洗。它的布料有天然自净功能,任何附着在上的污渍都能用水擦洗或冲干净。
(2)晶体物理前景如何扩展阅读:
纳米技术的潜在危害:
1、纳米颗粒的危害
纳米材料(包含有纳米颗粒的材料)本身的存在并不是一种危害。只有它的一些方面具有危害性,特别是他们的移动性和增强的反应性。只有某些纳米粒子的某些方面对生物或环境有害,我们才面临一个真的危害。
2、健康问题
纳米颗粒进入人体有四种途径:吸入,吞咽,从皮肤吸收或在医疗过程中被有意的注入(或由植入体释放)。一旦进入人体,它们具有高度的可移动性。在一些个例中,它们甚至能穿越血脑屏障。
纳米粒子在器官中的行为仍然是需要研究的一个大课题。基本上,纳米颗粒的行为取决于它们的大小,形状和同周围组织的相互作用活动性。它们可能引起噬菌细胞(吞咽并消灭外来物质的细胞)的“过载”,从而引发防御性的发烧和降低机体免疫力。
纳米粒子还可能因为无法降解或降解缓慢,而在器官里集聚。还有一个顾虑是它们同人体中一些生物过程发生反应的潜在危险。由于极大的表面积,暴露在组织和液体中的纳米粒子会立即吸附他们遇到的大分子。这样会影响到例如酶和其他蛋白的调整机制。
3、社会风险
纳米技术的使用也存在社会学风险。在仪器的层面,也包括在军事领域使用纳米技术的可能性。(例如,在MIT士兵纳米技术研究所研究的装备士兵的植入体或其他手段,同时还有通过纳米探测器增强的监视手段。)
在结构层面,纳米技术的批评家们指出纳米技术打开了一个由产权和公司控制的新世界。他们指出,就象生物技术的操控基因的能力伴随着生命的专利化一样,纳米技术操控分子的技术带来的是物质的专利化。
2003年,超过800项纳米相关的专利权获得批准,这个数字每年都在增长。大公司已经垄断了纳米尺度发明与发现的广泛的专利。例如,NEC和IBM这两家大公司持有碳纳米管这一纳米科技基石之一的基础专利。
碳纳米管具有广泛的运用,并被看好对从电子和计算机、到强化材料、到药物释放和诊断的许多工业领域都有关键的作用。但是,当它们的用途扩张时,任何想要制造或出售碳纳米管的人,不管应用是什么,都要先向NEC或者IBM购买许可证。
3. 物理上的"晶体"和"非晶体"有什么区别和定义
一、定义不同
1、晶体
分子整齐规则排列的固体叫做晶体。
2、非晶体
分子杂乱无章排列的固体叫做非晶体。非晶体在熔化吸热时,温度不断地升高。
二、常见类型不同
1、晶体
海波、冰、石英、水晶、金刚石、食盐、明矾、金属都是晶体。
2、非晶体
松香、玻璃、石蜡、沥青都是非晶体。
三、特性不同
1、晶体
(1)自然凝结的、不受外界干扰而形成的晶体拥有整齐规则的几何外形,即晶体的自范性。
(2)晶体拥有固定的熔点,在熔化过程中,温度始终保持不变。
(3)单晶体有各向异性的特点。
(4)晶体可以使X光发生有规律的衍射。
宏观上能否产生X光衍射现象,是实验上判定某物质是不是晶体的主要方法。
(5)晶体相对应的晶面角相等,称为晶面角守恒。
2、非晶体
非晶体又称无定形体内部原子或分子的排列呈现杂乱无章的分布状态的固体称为非晶体。 如玻璃、沥青、松香、塑料、石蜡、橡胶等。非晶态固体包括非晶态电介质、非晶态半导体、非晶态金属。它们有特殊的物理、化学性质。
例如金属玻璃(非晶态金属)比一般(晶态)金属的强度高、弹性好、硬度和韧性高、抗腐蚀性好、导磁性强、电阻率高等。这使非晶态固体有多方面的应用。它是一个正在发展中的新的研究领域,得到迅速的发展。
4. 物理系就业方向与前景
物理学是典型的基础学科,很少主动报这个专业的,调剂的居多,一部分冲兴趣去的也被虐的苦不堪言,那为什么还要设立这样的专业呢,有哪些具体的就业方向呢?
物理学和数学是几乎所有工科的基础,没有这俩各行各业都没法发展。但是重要不代表就业好,尤其是本科阶段的物理和数学,除了教师就没有对口的工作了。
物理学方向比较多(多指研究生阶段)。
真正列入招生计划的就物理学、应用物理学,个别学校会把微电子(无线电)、核物理、材料物理纳入物理学类,光电、力学属于物理学相关度比较大的专业,但属于工科。至于声学、凝聚态物理等属于研究生阶段的方向了。
本科阶段就业
准确来说,物理学就不是为本科就业做准备的,只有中学物理老师属于对口的,其它几乎找不到对口的工作,只能找光、电、声等相关度高一些的工作,以及程序员、柜员和不限专业的工作。所以物理学深造率相当高,开设的学校都比较好,可以凭牌子找工作。
研究生阶段就业
这个就比较多了,除了跨考金融、计算机专业的,物理学本学科的方向也很多,就业方向也很多。
比如粒子物理原子物理等离子物理就是偏理论方向。
凝聚态物理,基本上就是材料科学方向。
微电子基本上就是芯片和半导体方向。
核物理基本上就是核(电)工程行业。
工程物理属于数学、物理、工程交叉学科,去国防科工部门比较多,国务院直属的正部级机构——中国工程物理研究院(在绵阳)就是专门搞这个的。
就算是不跨考计算机和金融,很多人也可以去IT行业做程序员、算法,也可以去金融行业做量化金融,比如清北中科大的学生去了美国就三个主流出路,做科研,高校比较多,然后很多人去做了IT程序员和量化金融,名校生的综合素质加学习能力很容易转行热门行业,至于实际操作很快就学会,思维能力和学习能力是最重要的,越是高端行业越看重这一点,因为物理学毕业生有以下优势。
物理学思维:物理学学生都知道《费曼物理学讲义》,这本书就体现了物理学思维。具体来说就是从表面看原理、从原理到模型,物理模型与技术和量化金融领域有着异曲同工的联系。物理学和量化交易都要涉及理想系统假设,价格变动规律和流体速度的模型原理差不多。
理论指导实践的能力:物理学知识可以在工程技术发展初期解决技术问题,这个在电子管、晶体管和计算机科学的诞生体现的非常明显,早期的计算机专家、电子工程专家很多是物理学出身的。
坚实的数理基础:数学物理不分家,物理想学好必须数学好,物理模型离不开数学,很多数学问题首先是个物理学问题,比如拉格朗日乘数法就是先在理论力学领域被发展起来的。
过人的智商、好奇心和热情:这是物理学学生的集体特质,这种特质更适合金融和计算机领域。
很多学了物理学但就业不好的人,其实本来就不适合学物理学。
非专业人士仅供参考。
5. 研究生光学专业,光子晶体方向,请问前景怎么样啊
光子晶体是光学材料方面的专业,材料专业的还是比较容易就业的,比如可以和纳米技术相结合,还有就是光子晶体光纤呀等等,武汉不是有光谷么?而且现在光纤的应用那么广泛,很有发展前景,我觉得还是不错的,努努力,做出点自己的成果,相信你会有一个很好的未来的,祝你成功喔! 楼下的复制粘贴的,我比较讨厌他粘贴的那些言论,我就是学光学的,现在在做光声器件方向,以后面向医疗,感觉不错的,希望你参考下,谢谢!
6. 物理学硕士光子晶体方向就业怎么样
这个还是挺有前途的,但是目前只限于科研范畴,和这个相关的就业也是在大学或者是研究所。 如果去企业, 和这个专业本身无关。
说这个有前途是因为这个方向总是可以忽悠出一些慑人的词,比如 纳米, 比如隐形,还有meta material (亚材料?)。
我自己知道两个做这个很牛的组,一个在德国的Karlsruhe, 教授教Wagner, 物理系的,主要方向就是光子晶体和meta material。
另外一个组在美国,以前文献上面看到的,组长好像还是个中国人,做隐形材料的,呵呵。
如果去企业里面,反正基本上就是推倒重来,一切看你个人了,和这个专业本身关系不大。
大概就这些。
7. 现在学物理有什么前景
增加生活的小智慧,让自己变得更睿智。
8. 应用物理学毕业生有前途吗
个人认为,若实现个人价值还是要参考自己的兴趣爱好。
以上各专业分别涉及了能源,通信,材料等方面都十分有前途,参考中国国情,可能通信会更有“钱途”些。
粒子物理与原子核物理
有关核能源,如果做物理研究(与工程研究相区别),热核反应是重点方向;另外,原子尺度的物性研究也很好,量子效应,非线性都有很好的应用前景,如果对物质结构感兴趣,可以考虑。
量子信息
是未来通信发展的方向,但目前还处于试验研究阶段,距离转化为工业产值可能还有一段时间,现在主要用于信息加密等,不过,量子计算是科学界都在讨论研究的问题。对量子感兴趣,且并不需要过分考虑收入,可以试试。
凝聚态物理
研究晶体物理,半导体物理等及其光、电、热、磁等性质。也是一种材料的研究,大体上是研究稀土掺杂的材料,分析性质,提出应用。
光学
涉及的比较广泛。较成熟的是光纤,现在大家都在尝试建立全光网络,这其中的激光器,路由,全光信息处理等都是方向。全息存储,CCD这几年也发展的很快。光学是应时代对信息的要求而发展的(当然,照明也是光学的一部分)。就我个人倾向于光学。
9. 光晶体管的发展前景
尽管如此,包括电动(electronically-operated)与光动(optically-operated)的光交换机,都已经被开发出来。ETH Zurich的物理化学实验室教授Vahid Sandoghdar表示,光子技术与当今的电子技术相比,就很像今日的IC之于1950年代的真空管放大器。
ETH Zurich所开发的单分子光学晶体管,也有助于催生量子计算机。Sandoghdar表示,要在晶体管内用光子来替代电子,还需要很多年的时间;在此同时,科学家也在研究如何巧妙运用并控制量子系统,以实现量子计算机的梦想。