❶ 硫的气态有什么物理化学性质
硫蒸气
气态的硫单质,固态和液态的硫由单原子构成,而气态硫是由分子构成的.硫通常是一种淡黄色晶体,有橙色、无色、红棕色三种颜色的硫蒸气,它们都是硫的单质,但每个分子中硫原子的个数不同.硫蒸气一共有三种,呈现不同的颜色无色硫蒸气由4个硫原子构成红棕色硫蒸气由6个硫原子构成橙色硫蒸气由8个硫原子构成
❷ 固、液、气态是不是物理属性
应该不是,那个是物体存在的状态
❸ 物理的“三态”!急问!!!
和分子能量有关
温度越高,分子能量越高,运动速度越快,范围也越大,因此分子间距离就相应变大
❹ 固态,液态,气态是物理属性吗
Her feet are pale and frozen.
❺ 固态,液态,气体 她们的物理性质 它们的物理性质分别是什么有什么不同该如何区分
主要由于分子之间的作用力及间隙决定.
❻ 物质除了有固态,液态,气态之外还有什么其他的状态吗
固态,液态,气态是物质的三大常见状态,其他状态还有:
1,“等离子态”
原子是由原子核和电子组成的,通常情况下电子都围绕着原子核旋转。然而在几千摄氏度以上的高温中,气态的原子开始抛掉身上的电子,于是带负电的电子开始自由自在地游逛,而原子也成为带正电的离子。温度愈高,气体原子脱落的电子就愈多,这种现象叫做气体的电离化。科学家把电离化的气体,叫做“等离子态”。除了高温以外,用强大的紫外线、X射线和丙种射线来照射气体,也可以使气体转变成等离子态。也许你感到这种等离子态很稀罕吧!其实,在广漠无边的宇宙中,它是最普遍存在的一种形态。因为宇宙中大部分的发光的星球,它们内部的温度和压力都高极了,这些星球内部的物质几乎都处在等离子态。这是物质的第四种状态。处于等离子态的物质,电子与原子核“身首异处”,彼此离开。
2,“超固态”
在白矮星里面,压力和温度更高了。在几百吉帕气压的压力下,不但原子之间的空隙被压得消失了,就是原子外围的电子层也都被压碎了,所有的原子核和电子都紧紧地挤在一起,这时候物质里面就不再有什么空隙,这样的物质,科学家把它叫做“超固态”。白矮星的内部就是充满这样的超固态物质。在我们居住着的地球的中心,那里的压力达到350吉帕左右,因此也存在着 一定的超固态物质。
3,“中子态”
假如在超固态物质上再加上巨大的压力,那么原来已经挤得 的原子核和电子,就不可能再紧了,这时候原子核只好宣告解散,从里面放出质子和中子。从原子核里放出的质子,在极大的压力下会和电子结合成为中子。这样一来,物质的构造发生了根本的 变化,原来是原子核和电子,现在却都变成了中子。这样的状态,叫做“中子态”。中子态物质的密度更是吓人,它比超固态物质 还要大十多万倍呢!一个火柴盒那么大的中子态物质,重30亿吨,要有960000多台重型火车头才能拉动它!在宇宙中,估计只有少 数的恒星,才具有这种形态的物质。
4,非晶态——特殊的固态
普通玻璃是固体吗?你一定会说,当然是固体。其实,它不是处于固态(结晶态)。对这一点,你一定会奇怪。
这是因为玻璃与晶体有不同的性质和内部结构。
你可以做一个实验,将玻璃放在火中加热,随温度逐渐升高,它先变软,然后逐步地熔化。也就是说玻璃没有一个固定的熔点。此外,它的物理性质也“各向同性”。这些都与晶体不同。
经过研究,玻璃内部结构没有“空间点阵”特点,而与液态的结构类似。只不过“类晶区”彼此不能移动,造成玻璃没有流动性。我们将这种状态称为“非晶态”。
严格地说,“非晶态固体”不属于固体,因为固体专指晶体;它可以看作一种极粘稠的液体。因此,“非晶态”可以作为另一种物态提出来。
除普通玻璃外,“非晶态”固体还很多,常见的有橡胶、石蜡、天然树脂、沥青和高分子塑料等。
❼ 气态和汽态有什么不一样么(化学+物理)
这只能对同一种物质来说;两种状态中,分子之间的距离不一样,因而物理性质也发生了变化……
❽ 物质六态的常见的物质三态——气态、液态、固态
通常所见的物质有三态:气态、液态、固态。物质是由分子、原子或离子构成的。处于气态的物质,其构成粒子与粒子之间距离很远,几乎像宇宙空间中的星球那样分散。然而,对于液态物质来说,构成它们的分子彼此已靠得很近,分子一个挨着一个,它的密度要比气态的同种物质大得多。拿水中的H2O(水分子)来说,它们就像链条一样,一个接一个构成一条水分子的长链。虽然水分子已经彼此紧靠在一起,但构成水分子的二个氢原子和一个氧原子,它们之间还离得很开。对于固态物质来说,构成元素是以原子状态存在的,而且固体中的原子一个挨着一个,组成一个,‘点阵”,就像造房子的脚手架那样,相互攀拉,牢牢地结合在一起,这就是固体比液体硬的原因。 常温下的气体原子行为就象台球一样,原子之间以及与器壁之间互相碰撞,其相互作用遵从经典力学定律;低温的原子运动,其相互作用则遵从量子力学定律,由德布洛意波来描述其运动,此时的德布洛意波波长λdb小于原子之间的距离d,其运动由量子属性自旋量子数来决定。我们知道,自旋量子数为整数的粒子为玻色子,而自旋量子数为半整数的粒子为费米子。
玻色子具有整体特性,在低温时集聚到能量最低的同一量子态(基态);而费米子具有互相排斥的特性,它们不能占据同一量子态,因此其它的费米子就得占据能量较高的量子态,原子中的电子就是典型的费米子。早在1924年玻色和爱因斯坦就从理论上预言存在另外的一种物质状态——玻色爱因斯坦冷凝态,即当温度足够低、原子的运动速度足够慢时,它们将集聚到能量最低的同一量子态。此时,所有的原子就象一个原子一样,具有完全相同的物理性质。
根据量子力学中的德布洛意关系,λdb=h/p。粒子的运动速度越慢(温度越低),其物质波的波长就越长。当温度足够低时,原子的德布洛意波长与原子之间的距离在同一量级上,此时,物质波之间通过相互作用而达到完全相同的状态,其性质由一个原子的波函数即可描述; 当温度为绝对零度时,热运动现象就消失了,原子处于理想的玻色爱因斯坦冷凝态。
玻爱凝聚态有很多奇特的性质,请看以下几个方面:
这些原子组成的集体步调非常一致,因此内部没有任何阻力。激光就是光子的玻爱凝聚,在一束细小的激光里拥挤着非常多的颜色和方向一致的光子流。超导和超流也都是玻爱凝聚的结果。
玻爱凝聚态的凝聚效应可以形成一束沿一定方向传播的宏观电子对波,这种波带电,传播中形成一束宏观电流而无需电压。
原子凝聚体中的原子几乎不动,可以用来设计精确度更高的原子钟,以应用于太空航行和精确定位等。
玻爱凝聚态的原子物质表现出了光子一样的特性正是利用这种特性,2001年哈佛大学的两个研究小组用玻色-爱因斯坦凝聚体使光的速度降为零,将光储存了起来。 量子力学认为,粒子按其在高密度或低温度时集体行为可以分成两大类:一类是费米子,得名于意大利物理学家费米;另一类是玻色子,得名于印度物理学家玻色。这两类粒子特性的区别,在极低温时表现得最为明显:玻色子全部聚集在同一量子态上,费米子则与之相反,更像是“个人主义者”,各自占据着不同的量子态。“玻色一爱因斯坦凝聚态”物质由玻色子构成,其行为像一个大超级原子,而“费米子凝聚态”物质采用的是费米子。当物质冷却时,费米子逐渐占据最低能态,但它们处在不同的能态上,就像人群涌向一段狭窄的楼梯,这种状态称作“费米子凝聚态”。