① 库仑用扭秤实验测出了什么
A、法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律--库仑定律,并测出了静电力常量K的值.故A正确;
B、德国物理学家欧姆通过实验得出欧姆定律,并指出流过导体的电流导体的电压成正比,跟导体的电阻成反比.故B错误;
C、英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场.故C正确;
D、丹麦物理学家奥斯特发现了电流的磁效应.故D正确.
本题选择不正确的,故选:B
② 扭秤实验的万有引力定律的验证
英国科学怪杰卡文迪许于1789年用他发明的扭秤,验证了牛顿的万有引力定律的正确性,并测出了引力常量,卡文迪许的实验结果跟现代测量结果是很接近的,它使得万有引力定律有了真正的实用价值,卡文迪许也被人们称为第一个“能称出地球质量的人”。
牛顿的另一伟大贡献是他的万有引力定律,但是万有引力到底多大?
18世纪末,英国科学家亨利·卡文迪许决定要找出这个引力。他将小金属球系在长为6英尺(1英尺等于0.3048米)木棒的两边并用金属线悬吊起来,这个木棒就像哑铃一样。再将两个350磅(1磅等于0.4536千克)的铜球放在相当近的地方,以产生足够的引力让哑铃转动,并扭转金属线。然后用自制的仪器测量出微小的转动。测量结果惊人地准确,他测出了万有引力恒量的参数,万有引力常量约为G=6.67259x10^-11 (N·m^2 /kg^2)通常取G=6.67×10^-11(N·m^2/kg^2),在此基础上卡文迪什计算地球的密度和质量。卡文迪什的计算结果是地球的质量为6.0 x10^24kg。
③ 扭秤实验的物理思想和原理是什么用高一知识回答。
主要用了放大思想和万有引力定律。
扭秤装置把微小力转变成力矩来反映(一次放大),扭转角度又通过光标的移动来反映(二次放大).从而确定物体间的万有引力.
④ 卡文迪许扭秤的实验原理
原理利用了二次放大法
1. 尽可能地增大了T型架连接两球的长度使两球间万有引力产生较大的力矩,使杆偏转
2. 尽力的增大弧度尺与系统的距离使小镜子的反射光在弧线上转动了较大角度
求得引力常数G
其中,一般计算时,取
演示卡文迪许扭秤实验
1797年夏,英国物理学 家卡文迪许(H.Cavendish)着手改进米歇尔的扭秤并开始实验。1798年,卡文迪许利用扭秤,成功地测出了引力常量的数值,证明了万有引力定律的正确。
卡文迪许解决问题的思路是,将不易观察的微小变化量,转化为容易观察的显着变化量,再根据显着变化量与微小量的关系算出微小的变化量 。
实验原理
卡文迪许用两个质量一样的铅球分别放在扭秤的两端。扭秤中间用一根韧性很好的钢丝系在支架上,钢丝上有个小镜子。用准直的细光束照射镜子,细光束反射到一个很远的地方,标记下此时细光束所在的点。
用两个质量一样的铅球同时分别吸引扭秤上的两个铅球。由于万有引力作用。扭秤微微偏转。但细光束所反射的远点却移动了较大的距离。他用此计算出了万有引力公式中的常数G。
此实验的巧妙之处在于将微弱的力的作用进行了放大。
尤其是光的反射的利用
在卡文迪许的实验中利用了一个扭秤,典型的设计可由一根石英纤维悬挂一根载有质量为m及m的两个小球的杆而组成。每个小球距石英纤维的距离r相等。当一个小的可测量的扭矩加在这个系统上时,在石英丝上可以引起扭转,记下这个扭转值可以标定扭秤。我们可以利用这个扭矩,
它是由具有恒定的、作用力已知的弹簧在m的位置上施加一个水平的力而组成。
如果质量为m'的两个物体分别位于与质量为m的两个小球的水平距离很小的位置上,我们可以观测到石英丝的旋转,如右图所示。我们可以决定m'与M距离r,然后求施加在杆的端点的水平方向上的力,由此确立加在石英丝的力矩,从而求得万有引力的大小. 从质量m的测量所得的偏离,再根据上面所说到的,由石英丝旋转大小而取得的扭秤的标定,我们可以决定F之值。由于我们可以测量F,r以及m, m',现在在方程F = (G * m * m')/(r^2) 中除了G以外,所有量都是已知的,于是可从方程直接求出G,其值为G=6.7×10^(-11) (N * m^2)/(kg^2)。(A^B 表示A的B次方)
⑤ 库仑通过扭秤实验得出了电荷间相互作用的规律
A、伽利略发现了单摆的等时性,并得出了单摆的周期公式;故A错误;
B、奥斯特发现了电生磁,法拉第发现了电磁感应现象;故B错误;
C、库仑首先通过扭秤实验得出了电荷间相互作用的规律;故C正确;
D、伽利略通过斜面理想实验得出了维持运动不需要力的结论.故D错误.
故选:C
⑥ 库仑扭秤的原理是什么
18世纪80年代,法国物理学家库仑制作了一台十分精巧的丝悬磁针装置,并用它在巴黎天文台测量地磁场的强度。有一次,为了测量的准确,库仑用放大镜观察磁针偏转的角度,他偶然发现,平时用肉眼观察静止不动的磁针,竟在发生微小的振动。
“为什么会这样呢?”库仑紧紧抓住这个问题不放,“能不能用悬丝制造灵敏测力仪器呢?”库仑反复研究金属丝的扭力和它的扭转角度、直径与长度之间的关系。库仑在大量实验基础上经过分析发现:对某种金属丝而言,在弹性范围内,金属丝产生的扭力矩与它的扭转和直径的四次方的乘积成正比,与金属丝的长度成反比。库仑在1785年公布了这一研究成果,宣布发现了弹性理论,发明了扭秤。这种扭秤为研究微小相互作用力提供了强有力的工具,人们把它叫做库仑扭秤。
⑦ 扭秤实验测出引力常数的原理
牛顿发现了万有引力定律,但引力常量G这个数值是多少,连他本人也不知道。按说只要测出两个物体的质量,测出两个物体间的距离,再测出物体间的引力,代入万有引力定律,就可以测出这个常量。但因为一般物体的质量太小了,它们间的引力无法测出,而天体的质量太大了,又无法测出质量。所以,万有引力定律发现了100多年,万有引力常量仍没有一个准确的结果,这个公式就仍然不能是一个完善的等式。直到100多年后,英国人卡文迪许利用扭秤,才巧妙地测出了这个常量。卡文迪许测出引力常量的实验也被称为测量地球重量的实验。 引力常量测定这是一个卡文迪许扭秤的模型。这个扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。现在在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。怎样才能把这个角度测出来呢?卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出引力常量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。============================================================================论文题目:万有引力常数G的精确测量与扭秤特性研究
作者简介:胡忠坤,男,1972年12月出生,1998年09月师从于华中科技大学罗俊教授,于2001年06月获博士学位。
自从库仑和卡文迪许首次将扭秤技术应用于静电和万有引力的测量以来,扭秤作为一种主要的弱力精密检测工具被广泛地应用于万有引力和电磁力的精密测量等诸多研究领域。两百年来扭秤实验技术得到了不断的发展与完善,并在引力实验中发挥着主导作用。本论文在深入研究扭秤系统物理特性的基础上发展了一套高灵敏度的精密扭秤实验技术,并将其应用于万有引力常数G的测量。
万有引力常数G的精确测量不仅对于揭示引力相互作用的性质非常关键,而且对于理论物理学、地球物理学、天文学、宇宙学以及精密测量技术等领域的研究都具有重要的意义,因而得到理论和实验工作者的广泛关注。自Cavendish测出万有引力常数的第一个实验值以来,人们对此进行了大量的实验研究,并给出了近300个G的测量结果。但令人遗憾的是,作为最早被认识和测量的物理基本常数,与其它基本常数相比,G的测量精度迄今为止是最差的。这是因为万有引力相互作用十分微弱且不可屏蔽,而且涉及到质量、长度和时间等基本量的绝对测量,因此G的精确测量是一项艰巨而复杂的系统工作,它不仅需要好的物理思想和巧妙的实验方案,而且也极力追求实验检测技术的极限。因而作为一个热点和难点,万有引力常数G的精确测量为各国科学家所关注。近三十年来,大多数实验者都认为自己的测G实验达到了10-4数量级的相对精度,但事实上他们的测量结果之间的吻合度仅达到10-3数量级。由于G的测量值之间不吻合,国际基本物理学常数委员会在1999年调整基本常数时,将G的推荐值的相对不确定度由CODATA-86的128 ppm(1ppm= )增加到CODATA-98的1500 ppm。这也使G成为此次基本常数更新中唯一不确定度下降的物理学基本常数。这些现象充分说明测G的艰巨性和重要性,同时也意味着存在未被认识的系统误差。人们不禁要问:万有引力常数G的绝对数值究竟是多大?为了回答这一问题,我选择了万有引力常数G的精确测量这一基础研究课题,并希望能在基本物理学常数中写入中国人自己测出的值。该课题得到国家自然科学创新研究群体、国家杰出青年科学基金、国家自然科学基金重点项目、国家自然科学基金面上项目、国家科委九五攀登预研项目等7项课题资助。
围绕万有引力常数G的精确测量和精密扭秤特性研究,本文主要介绍以下四个方面的研究工作:
HUST—99扭秤周期法测G实验。扭秤可以绕着悬丝在水平面内自由转动,以探测作用于检验质量上水平方向的待测外力作用。作为一种高灵敏度的弱力检测工具,精密扭秤已被广泛应用于万有引力和电磁力等弱力的精密测量以及材料特性研究等诸多研究领域。扭秤周期法测量引力常数 G 的原理为:通过比较作为检验质量的扭秤系统在吸引质量两种不同引力场配置下的周期变化而测得G值。一根直径25 长度为513mm的钨丝悬挂两32 g的铜球检验质量构成扭秤, 扭秤系统置于真空容器中,自由震荡周期为3484秒。当两个6.25 kg 的圆柱体吸引质量置于一个检验质量两侧时,其周期增加到4441秒。我们实验的创新之处在于采用了长周期高Q值扭秤,并使之在一个恒温(日变化小于0.005 °C)环境下工作,从而克服了扭丝滞弹性和热弹性对测G的影响。我们采用的非对称扭秤可以使得较小的吸引质量产生较大的待测信号,但是这种设计使扭秤系统易受外界干扰的影响,同时也会增加扭秤运动的非线性效应,且对扭秤运动信号的周期拟合提出了更高要求。我们的实验结果的相对精度达到105ppm,该测量结果被国际物理学基本常数委员会推荐的CODATA-98值所采用,并被命名为“HUST-99”。
扭秤系统周期拟合数据处理方法研究。在周期法测量引力常数G的实验中,扭秤周期的测量精度直接影响G的测量精度。扭秤的周期一般从几分钟到小时量级,周期越长,灵敏度越高。但长周期的基频高精度拟合是一件很困难的事,用传统的傅氏变换、极值序列拟合和非线性最小二乘拟合等方法难以满足实验精度的要求。周期法测 G 实验对扭秤运动的基频的测量精度要求很高,而对振幅和位相等的测量精度要求相对较低。根据这一具体要求,本文提出了对扭秤运动周期的单参量直接基频拟合。单参量直接基频拟合的基本思想是只给出周期的最佳估计值,而对其他参量不作任何限制,即采用仅对信号周期敏感的方差作为判据,利用最小二乘原理给出周期的最可信赖值。理论分析和数值模拟表明该方法可有效克服周期法测 G 实验中的主要干扰,即由于非线性效应而寄生的高次谐波振荡;由于阻尼的存在引起的扭秤运动振幅的衰减;由于扭丝的蠕变及实验环境的变化而引起的扭秤静平衡点的漂移等。单参量直接基频拟合能高精度给出信号的周期,代价是牺牲了其它参量的测量精度。因为它未对其他参量作任何限制,换而言之给出了其他参量很大的变化范围,从而有可能高精度地将周期限制在较小的范围内,这类似于量子力学中的测不准原理。此外,单参量直接基频拟合与非线性最小二乘拟合相结合,不仅可以解决余弦函数类非线性拟合的线性化问题,同时还可以给出振幅和位相等其他参数的最佳估计值。
精密扭秤特性研究。目前各小组实验测量的G值在其误差范围内不吻合,这一现象说明存在未被认识的系统误差。为了解释该现象,我们系统深入地研究了精密扭秤系统的非线性、热弹性以及滞弹性等特性,并分析了它们对测G实验的影响。精密扭秤实验的精度依赖于扭丝弹性系数K的大小及其稳定性。为了减小精密扭秤实验中的系统误差,有必要深入研究K的常数性。我们的研究表明,在高精度扭秤实验中不可忽略K与环境温度、扭秤振动幅度及频率等因素的相关性。我们对扭秤的非线性、热弹性以及滞弹性等特性进行了实验测量,同时分析了这些特性对精密扭秤实验特别是周期法测G实验的影响。实验研究表明:当扭秤在10-2弧度下工作时,扭秤悬丝的非线性效应对测G的影响不到1 ppm;扭秤系统的品质因数Q值随其振幅的增加而衰减;扭秤系统的检验质量和吸引质量之间存在最佳配置,采用这种配置可降低源于吸引质量的非线性效应;环境温度的变化极大地影响扭秤悬丝的扭转系数K,对于实验中常用的钨丝而言,其温度系数为 ,即当环境温度变化 时,由热弹性引起测G的误差将高达165 ppm;背景环境磁场的涡流耗散与磁场强度的平方成正比,地磁场对扭秤系统Q值的影响可以忽略。
10ppm测G实验设计。在分析扭秤周期法测G传统配置的基础上,我们提出具有信号相互叠加而误差相互补偿特性的四吸引质量配置方案。四吸引质量配置存在降低检验质量间距测量精度要求的优化配置,与一般配置相比,该优化配置对检验质量间距的测量精度要求可降低约400倍。但这是以提高对吸引质量间距的测量精度的要求为代价:吸引质量间距0.2 的不确定度将对测值贡献3ppm的相对误差。为了高精度地测量吸引质量球间距,我们提出并实现了旋转量块法测量球间距,初步实验精度达到0.5 。改进该测量系统可以将测量的精度提高到0.1 以内。在四吸引质量优化配置和旋转量块法测量球间距的基础上,我们设计了10ppm测G实验方案,初步实验研究表明可以达到10ppm的实验精度。
总之,本文围绕万有引力常数G的精确测量和精密扭秤特性研究,得到以下主要研究成果:研制长周期高Q值的扭秤,并应用扭秤周期法测量了万有引力常数G,实验结果为G=(6.6699±0.0007)�0�710-11 m3kg-1s-2,其相对精度达到105 ppm;在分析传统周期拟合方法的基础上,在国际上首次提出并实现了单参量直接基频拟合方法,解决了扭秤周期的高精度提取;深入研究精密扭秤的非线性、热弹性以及滞弹性等特性;在前期工作基础上,本文最后给出了基于信号相互叠加而误差相互补偿的四吸引质量优化配置的周期法测G实验方案,初步实验研究表明该方案可以将G的测量精度提高到10ppm。
关键词:引力实验,万有引力常数G,精密测量,扭秤特性,周期拟合
⑧ 通过扭秤实验验证了牛顿的万有引力定律是卡文迪什在物理学上最主要的成就吗
卡文迪什在物理学上最主要的成就是通过扭秤实验验证了牛顿的万有引力定律,确定了引力常数和地球平均密度。他在青年时代就有了一定的研究成就。1760年,他被选为英国皇家学会会员。这是对他成就的一种肯定,但当时他觉得还远未到达自己所期望的目标。于是更加努力地工作,经常每晚只睡五六个小时。他的家庭很富有,他却终生未婚,一心投身于科学研究。他把客厅改作实验室,在卧室的床边放着许多的仪器。日复一日的辛劳,终于换来了收获——1798年,卡文迪什根据约翰•米切尔设计的方法制作成一台扭秤,它由轻质杆上固定着的两个质量很小的铅球组成,外观像一个哑铃,用掺银的铜线作扭丝把它悬挂起来,铜线上面附有一面小镜,然后用两个质量大的铅球分别靠近这两个小球,这时候哑铃就发生旋转,小镜也跟着偏转。就是凭借这个试验,卡文迪什证明了万有引力的正确性,并且测得引力常数G是(6.754±0.041)×10<-8>达因•厘米2/克2,这个值同现代值(6.6732±0.0031)×<-8>达因•厘米2/克2相差无几。
⑨ 扭秤测力的原理是什么
1、你的猜测是正确的,扭转力F=kθ,θ为扭摆转过的角度,k为扭转系数。
2、实验装置:在一个圆柱形的玻璃筒里,悬挂一根纽丝。扭丝的上端悬挂在筒顶,下端悬挂一支轻质绝缘杆,杆的两头分别挂质量相同的金属球。在接近一端的金属球不远处,放另一个金属球。根据扭转角度就可以知道他们之间的万有引力了。具体情况我也不记得了,你自己查一下,应该有。
3、库伦测的k和卡文迪许测的G原理类似,只是,它下面悬挂的绝缘杆的一边为绝缘物品,另一边才是可带点物品。固定一个带点物体,让可带点物体与其接触,平分电荷,就产生了库伦斥力。
4、但是,后者要求要高很多。原因如下:
⑴地球上的任意两物体之间都存在万有引力,但是,你几乎看不到。而卡文迪许用的球的质量也不是很大,所以,要求扭摆的精细度就很高了