导航:首页 > 物理学科 > 空间点的物理量是什么

空间点的物理量是什么

发布时间:2022-06-16 12:13:10

❶ ★物理中的空间、时空与数学中的空间具体区别都是什么★

数学中的空间 物理空间概念的延伸和抽象。如欧几里得空间、双曲空间、黎曼空间、各种函数空间和拓扑空间等等。它们反映了人们对空间结构各种属性认识的发展。

最早的数学空间概念是欧几里得空间。它来源于对空间的直观,反映了空间的平直性、均匀性、各向同性、包容性、位置关系(距离)、三维性,乃至无穷延伸性、无限可分性、连续性等方面的初步认识。但在很长时期里,人们对空间的理解只局限于欧几里得几何学的范围,认为它与时间无关。19世纪20年代,非欧几何的出现突破了欧几里得空间是唯一数学空间的传统观念。非欧几里得几何的空间概念具有更高的抽象性,它与欧几里得空间统一成常曲率空间,而常曲率空间又是黎曼空间的特殊形式。19世纪中叶,G.F.B.黎曼还引进流形概念。这些概念不仅对物理空间的认识起了很大作用,而且也大大丰富了数学中的空间概念。

19世纪末20世纪初,人们给出了维数的拓扑定义,并对函数空间的度量性质进行深入研究,从而产生了一系列重要的数学空间概念,特别是一般的拓扑空间概念。20世纪30年代后,数学中的各种空间在数学结构的基础上得到统一处理,人们对各种数学空间获得较完善的认识,并随着对物理空间认识的深入以及数学研究的发展,从代数、几何、拓扑方面推广各种数学上的空间观念。在代数方面对空间概念的推广主要来源于解析几何的产生和发展。几何对象(点、线等)与数组结成对应关系,使人们可以对空间进行精确的定量描述。这样便容易把坐标三数组推广到坐标 n数组(向量),其所对应的空间即为 n维线性空间或向量空间。这种空间从维数上对欧几里得空间做了推广,但抽去了欧几里得空间中的距离概念。实数域上的线性空间通常可以推广到一般域上,特别是有限域上的线性空间成了只有有限多个点的空间,其空间的连续性也被舍弃了。从代数和几何方面,可以把空间推广成仿射空间和射影空间。射影空间可通过几何方法或坐标方法把无穷远点和无穷远线包括在内。另外,也可以通过数组、相空间、状态空间等等使各种空间成为物理学乃至其他科学处理运动的直观模型。

空间的更抽象形式是拓扑空间。由于拓扑结构反映点与点之间的亲疏远近关系,因而在拓扑空间中欧几里得空间的距离和向量空间的向量长度这些概念都被舍弃了。

人们对各种数学空间的研究,反映了人们从局部、粗浅的直观到更深刻地认识空间的各种属性的过程。例如,拓扑学的发展,使人们对空间的维数、连续性、开闭性、空间的有边和无边以及空间的定向都有了更深入、更本质的理解。流形的研究对于空间的有限与无限、局部与整体的认识也产生了飞跃。流形概念是空间概念的重要发展。它从局部上看是欧几里得空间,但从整体上看可以有各种形式。它可开可闭,可有边可无边。这种深刻的认识对于物理空间的研究有着推动作用。例如,闵可夫斯基空间是狭义相对论的数学模型,黎曼空间则成为广义相对论的数学模型(见相对论)。

数学上的空间
数学上,空间是指一种具有特殊性质及一些额外结构的集合,但不存在单称为“空间”的数学对象。在初等数学或中学数学中,空间通常指三维空间。数学中常见的空间类型:
仿射空间
拓扑空间
一致空间
豪斯道夫空间
巴拿赫空间
向量空间 (或称线性空间)
赋范向量空间 (或称线性赋范空间)
内积空间
度量空间
完备度量空间
欧几里得空间
希尔伯特空间
射影空间
函数空间
样本空间
概率空间

物理学中所说的时间与空间

蔡宗儒

引言

我们生活在这浩瀚的宇宙,很自然的就有时间与空间这两个概念。 我们看到山河大地宇宙万物,若没有空间,那么山河大地宇宙万物要如何安置呢? 我们看到山河大地宇宙万物,若没有空间,那麽山河大地宇宙万物要如何安置呢? 万物的变迁,事件的成、住、坏,有了过去、现在、未来之别。 万物的变迁,事件的成、住、坏,有了过去、现在、未来之别。 所以时间与空间是用来安置或排序一切的万事万物。 所以时间与空间是用来安置或排序一切的万事万物。 在我们日常生活中,时间与空间的重要性是无法言喻的。 在我们日常生活中,时间与空间的重要性是无法言喻的。 不仅如此,当我们透过科学尝试去描述、认识与了解大自然,时间与空间更是重要。 不仅如此,当我们透过科学尝试去描述、认识与了解大自然,时间与空间更是重要。 在物理学中,没有一个物理的方程式是不需要时间与空间的。 在物理学中,没有一个物理的方程式是不需要时间与空间的。 因此本文将以物理学中所说的时间与空间来做一个简单的介绍,内容包括牛顿的时间与空间,相对论的时间与空间。 因此本文将以物理学中所说的时间与空间来做一个简单的介绍,内容包括牛顿的时间与空间,相对论的时间与空间。

牛顿的时间与空间

牛顿认为空间是绝对的(absolute) ,时间也是绝对的,时间与空间是各自独立的存在着 。 在牛顿的 “自然哲学的数学原理”一书中,他给绝对的空间下定义:Absolute space, in its own nature, without relation to anything external, remains always similar and immovable . “绝对的空间,本质是与外物无关的,是永久保持同样且静止的 。 ”也就是说牛顿认为,绝对空间与物质的存在否以及存在物质的种种特性是无关的,是三维度的空间,遵循着欧氏几何的架构 。 在物理学描述空间的物理量有长度、面积、体积等等。 因为空间是绝对的 , 所以在相对地面静止不动的观察者测量空间中 A 、 B 两点间的距离和相对地面在运动中(譬如在火车上 ,或是汽车上等 ) 的观察者测量 相同 A 、 B 两点间的距离是一样的。 换言之 ,若有一根棒子静置在地面上,相对地面静止不动的观察者去测量这根棒子的长度一定与在运动中的观察者所测量同一棒子的长度是一样的 。

牛顿也给绝对时间下定义: Absolute, true, and mathematical time, of itself, and from its own nature, flows equably without relation to anything external. “绝对,真实和数学的时间,本质是稳定的流动与外物无关的 。 ”如果时间是绝对的,相对地面静止不动的观察者去测量事件 A 和事件 B 的时距和 相对地面 运动中的观察者所测量这两事件的时距是一样的 。 换言之 ,若相对地面静止不动的观察者测量事件 A 、 B 是同时发生的,那么相对地面在运动中的观察者去测量事件 A 、 B 必然也是同时发生的 。

牛顿认为的时间与空间,具备“不受任何影响”的特质,所以是绝对的 。 因为是绝对的 ,所以具有共通和一致性,也就是说宇宙只有一个时间和一个空间, 而且时间与空间彼此是完全无关的。 时间与空间与万物无关 ,而万物存在时空中 。

相对论的时间与空间

爱因斯坦在西元1905年提出狭义相对论,彻底的颠覆了牛顿的绝对的时间与空间的观念 。 狭义相对论的基本假设之ㄧ是认定光在真空中走的速度大小是不变的。 也就是说 相对地面静止不动的观察者测量到的光速和相对地面在运动中的观察者测量到的光速是一样的 。 当时物理学家对光速不变的实验结果是非常迷惑的 , 因为这个结果是违反牛顿的绝对时间与绝对空间。 爱因斯坦接受光速不变的实验结果 ,并把光速不变当成是一个根本假设 。 在此假设下他建立了狭义相对论。 狭义相对论告诉我们 ,所谓的两事件 A 、 B 是“同时”发生的同时,是相对的而不是如牛顿所说的绝对的 。 也就是说 相对地面静止不动的观察者测量两事件 A 、 B 是同时发生的, 相对地面 运动中的观察者去测量相同两事件 A 、 B 不会是同时发生的 。 狭义相对论告诉我们 ,若有两个全同的(identical)时钟,其中一个相对于我们是静止的,另一个相对我们是在运动的,那运动中的时钟会走的比静止的时钟慢 。 换言之 ,运动中的时钟走的一秒比静止时钟走的一秒要来的长 。 换言之 ,在空中飞行的飞机上的人的一秒和地面上行走的人的一秒是不一样的;即使在同一架飞机上,坐着的人的一秒和走动的人的一秒也不一样 。 狭义相对论称这个叫时间膨胀( time dilation ) 。 至此时间不再是绝对的而是相对的。 在空间方面 ,狭义相对论导出运动中的尺长度会收缩( length contraction ) 。 什么是 运动中的尺 长度收缩呢? 若有一根尺静置在地面上,相对地面静止不动的观察者去测量这根尺的长度为 L 0 ,另一个沿着尺所指的方向运动的观察者测量同一尺的长度为 L ,则 L 会小于 L 0 。 也就是说在运动中的尺的长度会比同一尺静止时的长度来得短。 空间中不同两点间的距离 ,在不同座标系统的观察者所测到的距离是不同的, 所以空间不是绝对的而是相对的。 狭义相对论终结了牛顿的绝对时间与绝对空间。 狭义相对论对时间与空间的第二个冲击是 ,空间与时间透过光速不变而结合起来,时间与空间不能也不是彼此无关的 。

爱因斯坦的狭义相对论之所以称为狭义 ,是狭义相对论所研究物质运动的范畴不涉及万有引力,不考虑加速度的情况 。 然而在大自然中 ,任何物质必然受到万有引力的作用 。 爱因斯坦在西元1916年提出广义相对论, 广义相对论研究万有引力、时间-空间与物质的运动。 广义相对论认为 , 时间-空间不是平坦的 , 时间-空间会因为存在时空中的质量和能量的分布而被弯曲。 万有引力只不过是时间-空间不是平坦的所造成的结果。 广义相对论的时空是弯曲的 ,弯曲的程度是取决于万有引力的大小 。 也就是说只要有万有引力 ,四维时空就是弯曲的,万有引力越强的地方,时空弯曲的越严重,且 这弯曲的空间并不遵守 欧氏几何的架构 。 广义相对论也告诉我们 ,万有引力越强的地方时钟走的越慢 。 而万有引力是和物质的质量相关的。 所以在广义相对论 ,四维时空和物质是息息相关的 。在广义相对论发表以前 ,时空被认为是一个舞台,种种事件在其中发生,而这些事件并不会影响到时空 。 在广义相对论 , 时空必须和物质连结起来 ,物质的运动会影响着时空;反过来说时空也影响着物质的运动 。

除了相对论 , 二十世纪物理学的另一个伟大的发展是量子力学。 量子力学告诉我们基本粒子(如电子 、夸克等)具有粒子波动二元性。 我们没有办法同时淮确的得到微小粒子的位置和速度 ,这称之测不淮原理 。那么在微小粒子的世界 , 相对论和量子力学要怎么整合在一起呢? 为了解决这问题 , 物理学家正在发展量子引力理论。

物理学家想要发展一种能描述整个宇宙的理论 。 物理学家所采取的方式是将整个宇宙的问题分成许多小部份(界定研究范畴) ,并且在这些研究范畴内发明理论 。 每一理论描述和预测都有其范围限制。这好像是瞎子摸象般 ,要把部分所得的理论重组起来 。 更甚的是假如宇宙中的每一事件彼此都是相关 ,不可分割的,那么物理学家所采取的方法可能是错误的 。 让我们回到物理学的时间 与 空间。 我们要注意的是物理学所使用的物理量(例如长度、质量、时间等等)都是操作型定义 ,也就是说要经由种种条件(操作)后才定义出这些量 。若问物理学家时空的本质是什么? 物理学家更有兴趣的问题是光速为何是不变的呢? 物理学家以 时间与空间是用来安置或排序一切的万事万物。 时间与空间都是相对的,没有一个绝对的时间也没有一个绝对的空间 。 时间与空间彼此不是独立的 , 而是相关的 ,所以就称为时空 。时空是相对的不是绝对的 ,就表示时空有无限多,每个物体都有其各自的时空 。此外时空 与物质是紧密相关的,离开物质而谈时空是没有意义的 。

从零维空间到四维空间
——浅谈几何中的纯概念研究
(马利进 陇东学院数学系 甘肃庆阳 745000)
【摘要】
几何不一定是真实现象的描述,几何空间和自然空间并不能完全等同看待,纯概念的研究几何的发展是数学界的一个里程碑。从零维空间到三维空间,尤其是从三维空间到四维空间的发展更是几何学的的一次革命。
【关键词】
零维;一维;二维;三维;四维;n维;几何元素;点;直线;平面。
【正文】
n维空间概念,在18世纪随着分析力学的发展而有所前进。在达朗贝尔.欧拉和拉格朗日的着作中无关紧要的出现第四维的概念,达朗贝尔在《网络全书》关于维数的条目中提议把时间想象为第四维。在19世纪高于三维的几何学还是被拒绝的。麦比乌斯(karl august mobius 1790-1868)在其《重心的计算》中指出,在三维空间中两个互为镜像的图形是不能重叠的,而在四维空间中却能叠合起来。但后来他又说:这样的四维空间难于想象,所以叠合是不可能的。这种情况的出现是由于人们把几何空间与自然空间完全等同看待的结果。以至直到1860年,库摩尔(ernst eard kummer 1810-1893)还嘲弄四维几何学。但是,随着数学家逐渐引进一些没有或很少有直接物理意义的概念,例如虚数,数学家们才学会了摆脱“数学是真实现象的描述”的观念,逐渐走上纯观念的研究方式。虚数曾今是很令人费解的,因为它在自然界中没有实在性。把虚数作为直线上的一个定向距离,把复数当作平面上的一个点或向量,这种解释为后来的四元素,非欧几里得几何学,几何学中的复元素,n维几何学以及各种稀奇古怪的函数,超限数等的引进开了先河,摆脱直接为物理学服务这一观念迎来了n维几何学。
1844年格拉斯曼在四元数的启发下,作了更大的推广,发表《线性扩张》,1862年又将其修订为《扩张论》。他第一次涉及一般的n维几何的概念,他在1848年的一篇文章中说:
我的扩张的演算建立了空间理论的抽象基础,即它脱离了一切空间的直观,成为一个纯粹的数学的科学,只是在对(物理)空间作特殊应用时才构成几何学。
然而扩张演算中的定理并不单单是把几何结果翻译成抽象的语言,它们有非常一般的重要性,因为普通几何受(物理)空间的限制。格拉斯曼强调,几何学可以物理应用发展纯智力的研究。几何学从此开始割断了与物理学的联系而独自向前发展。
经过众多的学者的研究,遂于1850年以后,n维几何学逐渐被数学界接受。
以上是n维几何发展的曲折历程,以下是n维几何发展的一些具体过程。
首先,我们将点看作零维空间,直线看作一维空间,平面看作二维空间,并观察以下公设:
属于一条直线的两个点确定这条直线。 1.1
属于一条直线的两个平面确定这一条直线。(比较这个公设和公设1.1)。 1.2
属于同一个点的两条直线也属于同一个平面。(公设1.2的推论) 1.3
属于同一个平面的两条直线,也属于同一个点。 1.4
可以推断出:
1. 具有相同维数的两个空间,在某些条件下,确定另一个高一维的空间。例如:两个点(我们将它们看作两个零维空间)确定一条直线(一维空间)。属于同一个点(规定的条件)的两条直线(两个一维空间)也属于同一个平面(二维空间)。
2. 具有相同维数的两个空间,在某些条件下,也可以确定一个低一维的空间。例如:两个平面(两个二维空间)确定一条属于它们的直线(一维空间)。属于同一平面(限定的条件)的两条直线(两个一维空间)确定一个点(零维空间)。
3. 结论2没有包括这一事实,即两个平面可以确定一个高一维的空间。它只假定它们确定一条直线,这是比平面低一维的空间。这就留下了一个把我们的思想引申到高维空间的缺口。这个缺口的消除可在推论1.3“属于同一个点的两条直线也属于同一个平面”中,用几何元素直线、平面和三维空间依次的代替几何元素点、直线和平面来达到。
下面的推论是替换的结果。属于同一条直线的两个平面也属于同一个三维空间。
有了这个新的推论,我们就把与其他几何元素直接对应的几何元素——三维空间也包括了。
下一步是把对偶原理应用于这一推理,并从这些新引申的推论中得到一些固有的结论。在对偶原理将通过几何元素——平面和空间的位置交换而被应用。这时我们得到下述推论:
属于同一条直线的两个三维空间也属于同一个平面。 1.5
从推论1.5我们可以得到下述公设:
属于一个平面的两个共存的三维空间确定这一个平面。 1.6
在上述1.5和1.6的基础上,可以提出下面的看法:
1. 四维空间的几何条件是很明显的,因为维数相同的两个已知空间,只能共存于比它们高一维的空间里。例如:两条不同的共存直线(一维)位于一个平面内(二维);两个不同的共存平面(二维)(沿一直线共存)位于一个三维空间里;两个不同的共存三维空间(沿一个平面共存)位于一个四维空间里。
2. 在几何上被看作是不属于同一直线而相交于一点的两个平面,属于不同的各别的三维空间。
四维空间的概念也可以通过解析几何的手段来研究。在那里我们可以利用代数方程来表示几何概念。为了利用这个手段进行观察以导致对四维空间的理解,我们来研究三维空间体系中的三个几何元素——点、直线和平面的方程。利用笛卡尔系统表示,我们可以写出:
点的方程:ax + b = 0 (坐标系:直线上的一个点)。
直线的方程:ax + by + c = 0 (坐标系:平面上的两条正交直线)。
平面的方程:ax + by + cz + d = 0 (坐标系:三维空间的三个互相垂直的平面)。
从上面的研究我们可以看出:
所表示的每一个几何元素(或空间)的方程中的变量数目,等于这个空间的维数加1。
坐标系中的几何元素与被表示的几何空间的几何元素的维数相同。
在这个坐标系中,几何元素的数目等于被表示的空间的维数加1。在坐标系中,几何元素的这个数目是最低要求。
用来表示几何元素的坐标系,位于比它所含有的几何元素高一维的空间里。
根据上述观察,我们可以写出三维空间的下述方程。应当注意:这个方程有四个变量(x、y、z、u)。
ax + by + cz + + e = 0
现在我们可以断定:
1. 这个坐标系的几何元素有三维,即它们是三维空间。
2. 在这个坐标系中有四个三维空间。
3. 这个坐标系位于一个四维空间里。
我们对于四维空间乃至更高空间的研究,不是通过实验总结的方式,在现实中我们很难发现并推导出它们的一般规律,对于这些问题,我们可以采取一种新的研究方式。即:纯概念的研究。通过这种方式,我们可以容易的推导出这些很重要但在现实中不易想象的新内容。

❷ 力学基本物理量是多少

力学的三个基本物理量是:长度,质量,时间。

1、长度,是一维空间的度量,为点到点的距离。通常在量度二维空间中量度直线边长时,称呼长度数值较大的为长,不比其值大或者在“侧边”的为宽。

2、质量是量度物体平动惯性大小的物理量。产品或工作的优劣程度,提高质量。社会学领域,价值或主体感受的现量,如社会质量。

3、时间是一种尺度,是物理学中的七个基本物理量。时间是除了空间三个维度以外的第四维度。

力的分类:

1、根据力的性质可分为:重力、万有引力、弹力、摩擦力、分子力、电磁力、核力等。(注意,万有引力不是在所有条件下都等于重力。重力不是所有条件下都指向地心,重力是地球对物体万有引力的一个分力,另一个分力是向心力,只有在赤道上重力方向才指向地心。)

2、根据力的效果可分为:拉力、张力、压力、支持力、动力、阻力、向心力、回复力等。

3、根据研究对象可分为:外力和内力。

4、根据力的作用方式可分为:非接触力(如万有引力,电磁力等)和接触力(如弹力,摩擦力等)。

5、四种基本相互作用(力):引力相互作用,电磁相互作用,强相互作用,弱相互作用。

❸ 七个基本物理量都是怎么定义的我知道都有哪些物理

现在LED也用这个单位来表示,为11万lx左右(自己实测)。我刚才测量了一下,也就是说,1W的功率全部转换成波长为555nm的光。为了保护眼睛便于生活和工作,比如650nm的红色,1W的光仅相当于73流明,不能相混。正像压力,是描述光源发光总量的大小的。 人眼对不同颜色的光的感觉是不同的,此感觉决定了光通量与光功率的换算关系。阳光下的照度是自然界里面很大的也很常见的了光度学与光相关的常用量有4个、亮度。这4个量尽管是相关的,同样的管芯LED,直径5mm的I值就比3mm的大一倍多,光谱不同。 至于电光源的发光效率、电视上的白光以及日光就差别很大。 定义,比较专业而复杂、lux表。事实上,照度是最容易测量的了(相对其它三个量),照度表很便宜就可以买到(几百元):光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发)光强(度), 解释:是针对点光源而言的,如果发光体相对较小也可以用。这个量是表明发光体在空间发射的会聚能力的,那么发光强度就高。因此,2,房间是3.8mx6:发光强度、光通量、照度。 同样,因此才用mcd表示、重力、压强,但为不同的,这是因为人眼对红光不敏感的原因,与光功率等价。 对于各向同性的光,则 F = 4πI。也就是说:光源在单位时间内发射出的光量称为光源的发光通量 解释:同样,现在LED都很厉害了,但还是沿用原来的说法,即cd,这是对光源而言,为683流明。这个是最大的光转换效率,因为人眼对555nm的光最敏感。对于其它颜色的光、质量是不同的物理量一样、光照度(E,手电筒也用这个单位来表示亮与不亮,但这一特性不能全面反应其特性,比如某LED是15000的。 定义,120
3,购买LED的时候不要一味追求高I值,若光源的I为1cd。 常见光源发光强度(cd): 太阳。 之所以用发光强度来表示手电或LED,是因为在相同距离下对被照射地的照度是与这个成正比的。特别的说,100 满月照射下,0.2
4,即lm,但只有直径10mm的1/,见下)来表示了: 阳光直射(正午)下,110,000 普通房间灯光下,是另外一个相关的话题,是说1W的电功率到底能转化成多少光通量。如果全部转换成555nm的光。对于人眼最敏感的555nm的黄绿光。高I值的LED都是把镜头加长照射角度变窄来实现的,这尽管对LED手电有用,但可观察角度也受限。另外,50 太阳,94 钠灯,要看情况了。对于白色光,但又与被照射物体无关。一个流明的光。白炽灯能达到1W=20 lm就不错了,其余的都成为热量或红外线了。测量一个发光体的光通量,要用到积分球.5流明。
1;瓦) 白炽灯,15 白色LED,那就是每瓦683流明。但如果有一半转换成555nm的光。 常见发光的大致效率(流明/,均匀射到1m2的物体上。 定义:1流明的光通量均匀分布在1平方米表面上所产生的光照度 解释:光照度是对被照地点而言的。 常见照度(勒克司),另一半变成热量损失了,那效率就是每瓦341,20 日光灯;4,因为很多不同的光谱结构的光都是白色的。例如LED的白光,1W = 683 lm,在不同场所下到底要多大的照度都有规定,例如机房不得低于200 lx,则总光通量为4π =12.56 lm 要知道,光通量是人对光总量多少一种度量,是人为为量,对于其它动物可能就不一样的,更不是完全自然的东西.8E27 高亮手电,10000 5mm高亮LED,15
2、光通量(F,Flux),单位流明,还要看照射角度、发光强度(I、Intensity),单位是mcd,1000mcd=1cd,因此15000mcd就是15cd,单位坎德拉,桌面照度为400勒克司,我们可以直接用照度表来测量发光强度,距离1m的lx就是cd值。因此,照度就是1 lx。照度的测量,用照度表。 这样表示的缺点是,如果光通量相同的两个LED(管芯相同),一个会聚的好。 以前最早LED的发光强度比较弱,或者叫勒克斯表.5m,有12个20W的日光灯管,因为透镜越大会聚特性就越好,比如,同样的筒身,换个大头则I值马上翻倍,因此更多的用光通量(流明,Illuminance),单位勒克斯即lx(以前叫lux),因为这种定义完全是根据人眼对光的响应而来的、亮度(L,Luminance)

❹ 怎么把时间和空间联系起来,通过物理量

质量 时间 长度(衍生:角度)

<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />

转动惯量 光的波粒二象性 超弦理论 透镜效应 电磁MAKSWEI 时空 引力 虚与实时间

奇点 宇宙活动

结论:只有3个物理量:质量,时间和长度是无法还原或微分的。

是赋予时空基本物理意义的3个大量

频率,是单位时间内完成振动的次数,是描述振动物体往复运动频繁程度的量,

基本粒子(如电子)围绕本身的轴进行的迅速转动或这种粒子的体系在其轨道运动中的迅速转动,这种转动与可测量的角动量和磁距相对应。

我们在研究外部世界时必须确定的就是关于粒子本身。

在研究过程中,粒子被认为是质点。而质量又是什么?

质量是物体所含物质多少的衡量,而密度这个概念的引进实际是为了帮助理解物体质量微分后的结果。

我们在理解物理量-质量时需要首先了解粒子的旋转惯量与宏观物体稳定状态的关系。(在研究过程中,粒子被假设为零点,无质,无长,无时间跨度—注意时间跨度是为了确定相对于它在每个变化空间跨度中的大小的微分而产生的测量量度)

3个基本点:
1基本粒子(如电子)围绕本身的轴进行的迅速转动或这种粒子的体系在其轨道运动中的迅速转动,这种转动与可测量的角动量和磁距相对应
2 转动惯量的大小与粒子本身的质量,质量分布和位置有关。
3 因此质量,时间,和长度与转动惯量是有本质联系的,而转动惯量(粒子自旋大小的量度又与其他衍生的物理量有本质联系)

详细发展第3个点:转动惯量与其他衍生的物理量的关系:
1 转动惯量与能:这是最直接的关系。我们甚至可以这样说,爱因斯坦的质能方程E=MC2 实际是一种对惯量大小的最直接描述。换句话说,能量实际就是转动惯量的效果量度。因此我们不能直接测量能量,但转动惯量的计算却反应了物体能量的状态。
<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" /><?xml:namespace prefix = w ns = "urn:schemas-microsoft-com:office:word" />这是最标准化的1张示意图,但前提是自旋粒子被认为是完全的质点(上文已经提到)让我们重新来看质能方程的定义公式:E=mc<?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />2 M物体的质量即是单位物质密度的可变积分(数学表达:m={qds})而单位物质密度又该如何解释呢?q在这里应该被理解为有限个粒子在稳定状态下自旋-合外力不变,且加速度/角速度大小恒定)的稳定转动惯量的密度,q`=dI/dt(T仍然是说时间跨度,目前最完整的定义只能是说空间变化的微分,但事实是微分这个词不够严谨)(但有限个粒子又如何理解?我们可以认为是设定的特定时空区域下的自旋粒子的集合)。然而我们又该如何认定光速这个恒定量?很明显,速度这个定义来自于长度,它的描述实际是一种1维量,是1维时空下的单位时间跨度的变化量度。所以在假设了时间趋近于为无限小的情况下我们认为速度仍是长度,尽管长度的微分概念与之有所区别。那么关系就很明白了:MI(转动惯量)=∑mr2=∫(m/L*r2dr=1/3mL2=kmv2。

❺ 七个基本物理量都是怎么定义的我知道都有

❻ 物理量的定义

量度物质的属性或描述物质的运动状态所用的各种量值叫做物理量。物理学中有七个基本物理量。其它的物理量都是按照它们的定义由基本物理量组合而成的,叫做导出物理量。

为了适应各个科学领域的发展。国际上以七个基本物理量的单位为基本单位,建立了一套单位制,叫做国际单位制。又称SI制。这七个基本物理量的基本单位是:长度的单位:米;质量的单位:千克;时间的单位:秒;电流的单位:安培;热力学温度的单位:开尔文;物质的量的单位:摩尔;发光强度的单位:坎德拉。导出物理量的单位称为导出单位。它是按物理量之间的关系,由基本单位以相乘或相除的形式构成的。如在国际单位制中,速度的单位:“米/秒”就是由基本单位米除以基本单位秒构成的。

光年,长度单位,指光在真空中一年时间中行走的距离,即约九万四千六百亿公里。更正式的定义为:在一儒略年的时间中(即365.25日,而每日相等于86400秒),在自由空间以及距离任何引力场或磁场无限远的地方,一光子所行走的距离。因为真空中的光速是每秒299,792,458米(准确),所以一光年就等于 9,460,730,472,580,800米。
(或5,786,101,150,000英里。
或5,108,385,784,330,890海里
或约等于9.46 × 10^15 m = 9.46 拍米。 )

(注:1千米(公里) = 0.6214英里 =0.540海里)

光年一般是用来量度很大的距离,如太阳系跟另一恒星的距离。光年不是时间的单位。

质量是物体的一种基本属性,与物体的状态、形状、所处的空间位置变化无关。
1.物理学中的质量:物体含有物质的多少叫质量。质量不随物体形状、状态、空间位置的改变而改变,是物体的基本属性,通常用m表示。在国际单位制中质量的单位是千克,即kg。
不得不提及,在物理学中质量分为惯性质量和引力质量。惯性质量表示的是物体惯性的大小,而引力质量表示收引力的大小。事实上,通过无数精确的实验表明,这两个质量是相等的,也就是说,他只是同一个物理量的不同方面。

密度
在物理学中,把某种物质单位体积的质量叫做这种物质的密度。
1、某种物质的质量和其体积的比值,即单位体积的某种物质的质量,叫作这种物质密度。符号ρ。单位为千克/米^3。
其数学表达式为ρ=m/V。在国际单位制中,质量的主单位是千克,体积的主单位是立方米,于是取1立方米物质的质量作为物质的密度。对于非均匀物质则称为“平均密度”。
2、密度的物理意义。用水举例,水的密度在4℃时为10^3千克/米^3或1克/厘米^3(1.0×10^3kg/m^3,物理)意义是:每立方米的水的质量是1.0×10^3千克。

❼ 什么是描述质点运动状态的物理量

正 在普物力学中,当确定了坐标系,对质点的位置能给予准确的描述之后,描述质点运动状态的物理量有速度、动能、动量、角动量等四个。它们都是为了定量表述质点运动的规律与特征而引用的。当我们用质点运动的一般规律去处理具体的质点运动时,只有首先把握这些描述其运动状态的物理量,才能得到质点运动的具体规律。 在运动学中,对应质点的运动学规律,我们以速度来描述质点的运动状态。它以空间对时间的变化率反映了质点运动的快慢与空间指向。如果知道了速度随时间变化的函数关系,则可求得质点空间位置随时间变化的规律。例如已知质点沿X轴作直线运动的速度为V=dx/d=V-o+at

❽ 物理量是什么意思

物理量(physical quantity)是指物理学中所描述的现象、物体或物质可定性区别和定量确定的属性。简称为量,如长度、质量、时间等。物理量有固定的名称、符号,有时符号带有确定的下标或其他说明性标记。物理量的符号必须用斜体表示,符号后不附加圆点。作为下标的字母如不表示量,则用正体表示。如相对原子量符号用Ar表示,其中A为斜体,下标r为正体。物理量具有明确定义及其物理意义,可用各种方法对它进行测量,测量的结果用数值和物理量单位来表示。每个物理量的单位有一定的量纲。物理量的特点为:①同类量必能相互比较,每一个量必能以量值定量描述;②物理量独立于物理量单位,物理量的定义中不涉及单位;③物理量包括标量、向量和张量[1] 。

❾ 什么是物理量

  1. 物理量是物理之中能测量的量,例如质量、体积,或者是测量通常以数和物理单位(通常使用国际单位制单位)的积表达的结果。

  2. 物理量是指物理学中所描述的现象、物体或物质可定性区别和定量确定的属性。简称为量,如长度、质量、时间等。

  3. 物理量有固定的名称、符号,有时符号带有确定的下标或其他说明性标记。物理量的符号必须用斜体表示,符号后不附加圆点。作为下标的字母如不表示量,则用正体表示。如相对原子量符号用Ar表示,其中A为斜体,下标r为正体。物理量具有明确定义及其物理意义,可用各种方法对它进行测量,测量的结果用数值和物理量单位来表示。

  4. 每个物理量的单位有一定的量纲。

  5. 物理量的特点为:

    ①同类量必能相互比较,每一个量必能以量值定量描述;

    ②物理量独立于物理量单位,物理量的定义中不涉及单位;

    ③物理量包括标量、向量和张量。

❿ 物理学中如何全面描述一个物理量

  1. 建立坐标系(仿射坐标系、曲线坐标系等)。

  2. 将物理分量和坐标点一一对应,任何一个物理量都可以用带下标的有序数组表示。0个下标的数组表示的量叫标量,1个下标的数组表示的量叫矢量,2个、3个、4个以上 下标数组表示的量叫2阶、3阶、4阶以上张量。

    例如在三维空间中,质量是标量,只需1个没有下标的数表示:m=5kg;力是矢量,需用有1个下标的三个数表示:F=(X1, X2, X3). 电磁场张量需要有2个下标的9个数表示,这9个数排成一个3*3方阵。

阅读全文

与空间点的物理量是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:763
乙酸乙酯化学式怎么算 浏览:1425
沈阳初中的数学是什么版本的 浏览:1383
华为手机家人共享如何查看地理位置 浏览:1073
一氧化碳还原氧化铝化学方程式怎么配平 浏览:912
数学c什么意思是什么意思是什么 浏览:1442
中考初中地理如何补 浏览:1333
360浏览器历史在哪里下载迅雷下载 浏览:729
数学奥数卡怎么办 浏览:1423
如何回答地理是什么 浏览:1060
win7如何删除电脑文件浏览历史 浏览:1077
大学物理实验干什么用的到 浏览:1514
二年级上册数学框框怎么填 浏览:1732
西安瑞禧生物科技有限公司怎么样 浏览:1082
武大的分析化学怎么样 浏览:1271
ige电化学发光偏高怎么办 浏览:1361
学而思初中英语和语文怎么样 浏览:1694
下列哪个水飞蓟素化学结构 浏览:1451
化学理学哪些专业好 浏览:1507
数学中的棱的意思是什么 浏览:1092